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The electronic spectrum of the icosahedral quasicrystal with a central atom decoration
of Amman ~ Mackay network is investigated in the tight binding approximation. The
quasicrystal is described as a structural limit of the optimal cubic approximants with
increasing period. The electronic spectra for the first four optimal cubic approximants do
not contain the hierarchical gap structure which is typical for Cantor set of the spectrum
of one-dimensional quasicrystal. At the same time the spectrum with the increase of the
order of approximant becomes singular in the whole energy scale.

PACS: 71.23.Ft

Quasicrystals are the objects which have non-crystallographic symmetry and posi-
tional long-range order (i. e. they coherently scatter electrons or X-ray) [1]. Quasicrystals
reveal unusual physical properties. They have the linear temperature contribution to the
electronic heat capacity which is a bit smaller than the one in the simple metals [2]. Re-
cent experiments show that below 4K with increasing the structural order of quasicrystal
the temperature dependence of ¢, (T') becomes exponential (this indicates the presense of
a gap in the electronic spectrum) [3]. The resistivity of quasicrystals is anomalously high
(it reaches nearly 2 Q-cm at 0.5 K in the stable icosahedral phase of the system AIPdRe
{4]). It strongly depends on the phase stochiometry. It decreases when the tempera-
ture increases and increases at increasing structural order as well as annealing of defects
[2, 5]. The Hall constant of quasicrystals is large and strongly temperature dependent,
the optical conductivity does not follow Drude’s law, the thermoelectric power is also
strongly temperature dependent [2, 6]. In the weak magnetic field the negative magne-
toresistance is observed [2]. Most quasicrystalline phases (even alloys with transition
elements) are weak diamagnetics in a wide temperature interval [6]. It is obviously that
all the mentioned specific properties are tightly connected with electronic spectra of the
quasicrystals.

The electronic spectra of quasiperiodic objects have been studied in detail for the
cases of one- and two-dimensional quasicrystals [7~10]. The energy spectrum of one-
dimensional quasilattice (two-fragment Fibonacci chain) consists of a Cantor set of
Lebesque measure zero with self similar gap structure, and the wave functions are criti-
cal, being neither localized nor delocalized (7, 8]. In the two-dimensional case the energy
spectrum contains a singular (non smooth) part and the most wave functions are critical
[9, 10]. As a consequence of the exotic electronic structure of one- and two-dimensional
quasicrystals there is a power law dependence of resistivity via object size [9]. The char-
acter of the electronic spectrum and the wave functions of three-dimensional quasicrystals
with Amman — Mackay network structure have not been studied enough. Many explo-
rers incline to think that this system does not contain any peculiarities in the behaviour
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of the wave functions and energy spectrum (see, for instance [11]). For example, Mar-
cus in his work on the electronic properties of the three-dimensional quasicrystal in the
tight-binding approximation has not found any fundamental differences between those of
quasicristals and crystals. He has concluded that the energy spectrum is smooth and the
wave functions are delocalized [12]. On the other hand Niizeki and Akamatsu proposed
that in the three-dimensional case “critical” wave functions do exist and that the energy
spectrum has an exotic, singular continuous form [13]. The same results were obtained
in the papers [14-16]. Recently the structural model of three-dimensional icosahedral
quasicrystals has been proposed where the quasicrystal is made with the help of the set
of four tetrahedra [11]. The electronic spectrum of the three-dimensional quasicrystal
with such a structure reveales the strong oscillations of the density of states (DOS) in
the whole energy range and the localization of selective states on the special topological
configurations [11]. So the existing results are contradictory and new investigations are
needed.

In the present work the electronic energy spectrum of icosahedral quasicristal is inves-
tigated in the tight-binding approximation. As quasicrystals do not possess translational
symmetry and traditional methods for the calculations of the band structure of solids
based on Bloch’s theorem are no longer applicable, the objects of study are optimal cubic
approximants of the icosahedral quasicrystal. The quasicrystal is regarded as the struc-
tural limit of a sequence of optimal cubic approximants with an increasing period and
the electronic properties of approximants are investigated in the tight-binding approxima-
tion. The approximants are constructed by the projection method [17]. The Hamiltonian
with constant transfer integrals for the nearest neighbours has been used to minimize the
amount of free parameters (as the result for one- and two-dimensional quasicrystals show
this type of Hamiltonian makes it possible to reproduce the characteristic features of the
quasicrystalline object and to consider qualitatively the influence of quasiperiodicity on
electronic structure of quasicrystals of the corresponding dimension (2, 7-10, 18]).

We have considered a “central” decoration of the approximants: the atoms with one
s-orbital per atom are located at the centers of rhombohedra. In this case one can write
down the Hamiltonian of the system as follows

H=Y" |yl
ha#i
where the transfer integrals are chosen equal to a nonzero constant (¢;; = —1) only for the

nearest neighbors — for atoms belonging to rhombohedra which have a common face (tak-
ing into account that the next neighbors do not introduce anything qualitatively new and
only complicate the calculations). Using the projection method the first four optimal cubic
approximants of the icosahedral quasicrystals have been investigated, namely 1/1, 2/1,
3/2, 5/3 approximants. The approximant f..1/f. (where f, is the Fibonacci sequence
with fo=fi =1, fo=fo1+fazand im for1/fo=Q1+ v5)/2 = 1) is connected

with replacement by rational number f,,,/f, of the irrational number 7 = (1 + v/5)/2
which describes the incommensurability of the icosahedral structure and is used for con-
structing the mentioned above approximants. With the increase of n the number of
atoms in the basis the period of fn,1/f. approximant increases and the approximant
“approximates” the icosahedral quasicrystal more accurate. The case n — oo describes
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the icosahedral quasicrystal. The unit cells of the considered approximants contained 32,
136, 576, and 2440 atoms in the basis, respectively.
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The results of DOS calculations are presented in Figures. The calculations for the first
three approximants (1/1,2/1,3/2) (Figs.1-3) have been done by the tetrahedra method
using the values of energy levels in 40 k-points of the irreducible part of the Brillouin zone
of the corresponding approximant. For 5/3 (Fig.4) approximant we used only the 4 k-
points in the irreducible part of the Brillouin zone. Because of a rather small volume of the
Brillouin zone for 5/3 approximant (with respect to the volume of the Brillouin zone for
the first approximant) the increase of the number of k-points in calculation should weakly
influence the calculated DOS. One can see from Figure that with the increase of the order
of periodic optimal approximant the DOS curves become less smooth and more “spiky”.
This confirms the conclusion about the presence of the singular (non smooth) part in
the energy spectrum of the icosahedral quasicrystal obtained by the level statistic method
(14, 16]. In the opposite case (without singular part) the DOS is a smooth curve. Besides,
one can see from Figure that the smoothness of the spectrum depends on the energy range:
the spectrum is smoother in the range of small energies and the strong oscillations present
mostly in high energy range. However, with the increase of the order of approximant the
length of the smooth region of the energy spectrum decreases. For this reason one can
believe that in the thermodynamic limit-(n — oo, i. e. the case of quasicrystal) the
strong DOS oscillations (a singular part of the spectrum) present in the whole energy
range including the longwave part of the spectrum, that demonstrates that the energy
zones in quasicrystal are flat and practically dispersionless (this obviously influences the
optical properties of quasicrystals). The plots in Figure are in good agreement with DOS
calculations for the first four periodic approximants carried out by Carlson in the nearly
free electron approximation [19]: the gap is seen in the region of small energies of the
spectrum of 5/3 approximant, though in the energy spectrum of lower order approximants
the like gaps are not exist.

Using the calculated DOS we determined the Lebesgue measure of the energy spectra, of
the investigated approximants. The Lebesgue measure of one-dimensional set § is defined
as an exact low boundary of the length sum of the finite or countable set of intervals which
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cover S. The Lebesgue measure of the energy spectrum was calculated as a total length
of the permitable regions in the energy range [-6;6] (according to the well-known theorem
on spectrum boundaries [20] the energy levels of the investigated system belong to the
interval —6 < E < 6). The Lebesgue measures of the energy spectra for 1/1, 2/1, 3/2,
5/3 approximants normalized on the total band width B (because of the fast convergence
of the integrated DOS for considered approximants the B value for 5/3 approximant has
been choosed) turned out to be equal to 0.95, 0.98, 0.98 and 0.97, respectively. For this
reason one may conclude that for the three-dimensional quasicrystal the dependence of
the Lebesgue measure of the energy spectrum with respect to the order of approximant
is small in contrast with the case of one-dimensional quasicrystal, where the Lebesgue
measure of the energy spectrum of the periodic approximant decreases with system size
according to a power law [7, 8]. A rather small difference of the Lebesgue measures
of the energy spectra of the two latter approximants shows that the energy spectrum of
three-dimensional quasicrystal occupies the region of a finite width on the energy scale.
Besides that the values of the normalized Lebesgue measures of the energy spectra of
considered approximants (which close to 1) and the tendency to the convergence of the
results shows that the spectrum of the icosahedral quasicrystal does not have large energy
gaps. So the energy spectrum of the three-dimensional quasicrystal has the “noncantor”
(non self similar) character. This has to influence on the specimen length dependence of
conductance and the related properties of three-dimensional quasicrystal.

In conclusion the results show that the electronic spectrum of the three-dimensional
icosahedral quasicrystal with Amman - Mackay network structure significantly differ
from the electronic spectrum of the one-dimensional quasicrystal. Like in the case of the
one-dimensional quasicrystal the energy spectrum of the three-dimensional quasicrystal
contains the singular part. However, due to the other topology the structure of the energy
spectrum of icosahedral quasicrystal is nonself-similar and this is the reason of nonzero
Lebesgue measure of the energy electronic spectrum of a three-dimensional quasiperiodic
object. Besides that the energy spectrum of the investigated model of the icosahedral
quasicrystal does not contain big gaps, and the quasiperiodicity of the structure is the
reason of very strong oscillations of the DOS in the whole energy range including the long
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wave part of the spectrum (the same is obviously has to appear for the other excitation
spectra of quasicrystal-phonons etc.). As a consequence the energy zones in quasicrys-
tal are flat and practically dispersionless, the electrons are quasibound and have zero
group velocity, and this is obviously the cause of anomalously low electric conductivity,
low excitation energies of quasiparticles on the Fermi level, unusual magnetic properties
(diamagnetizm) of quasicrystalline alloys [21]).
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