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We discuss exact renormalization group (RG) in RZ-gravity using effective
average action formalism. The truncated evolution equation for such a theory on
de Sitter background leads to the system of non perturbative RG. equations for
cosmological and gravitational coupling constants. Approximate solution of these
RG equations shows the appearence of antiscreening and screening behaviour of
Newtonian coupling what depends on higher-derivative coupling constants.

PACS: 04.20-q

In the absence of consistent quantum gravity it could be that consideration
of effective models for quantum gravity (QG) is the only possibility to take into
account gravitational phenomena in high energy physics. One may start from
particular model of QG (see [l] for a review) and to formulate effective model
which describes theory in some region. In such a way, effective theory for conformal
factor to describe QG in far infrared (at large distances) has been formulated [2].
Such theory which is based on higher-derivative scalar gives the way to estimate
the behaviour of Newtonian coupling [3].

One may consider Einstein gravity as effective theory and estimate quantum
corrections to Newtonian coupling [4] using effective field theory technique. More-
over, as non-renormalizability is not a problem in such approach one can apply
exact RG [§], say in a form of effective average action, in order to formulate the
non perturbative RG equations for coupling conmstants in Eistein gravity [6, 7].
In the same way it is very interesting to consider RZ-gravity as effective model.
Such model attracts a lot of attention (see [1] for a review and list of references),
being multiplicatively remormalizable (but eventually non-unitary in perturbative
approach). Note that perturbative RG equations for higher-derivative gravity have
been first considered in ref.[8] (see [I] for an introduction). A kind of effective
R?-gravity leads to more or less successful inflationary Universe [9).

In the present letter we formulate the evolution equation and non-perturbative
RG equations for coupling consiants in RZ-gravity [1]. The action to start with
is given by the following (in Euclidean notations)
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where R*R* = 1/46“"""6,\;,75R")£R1';, Cuvap is the Weyl tensor, k=2 =32xG is the
Newton constant, €, f2,v? are gravitational coupling constants. It is well known
that the theory with action (1) is multiplicatively renormalizable and asymptotically
free. Note that perturbative running of Newtonian coupling constant in a theory
(1) with matter has been disscussed in ref. [10].

Following the approach of ref. [6] we will write the evolution equation for the
effective average action Ii[g,§] defined at non zero momentum ultraviolet scale k
below some cut-off Acyt-opf. The truncated form of such evolution equation has
the following form:

_ 1 2)r, = gravi- -1 gTav [
8:Tkle,g) = 5T | (Tle, 91+ RE W) BT (9] -

- 3T [(~Milo, 3] + RE2a)) 0 REE ()] )

here t=lInk, Rj are cutoffs in gravitational and ghosts sectors, c; are the weights
for ghosts (we have Fadeev-Popov ghost with cpp =1 and so called third ghost
with weight cr¢ = 1/2), guv = Guv + hyw where hy, is the quantum gravitational
field, I‘iz) is the Hessian of T'i[g,§] with respect to g,, at fixed g,,, M; are ghost
operators. Note that the RHS of eq. (2) is very similar to the one-loop effective
action.

At the next steep we have to specify the truncated evolution equation for the
theory (1). Starting from UV scale Acyi-off, evolving the theory down to smaller
scales k << Acut-off We may use the truncation of the form

'cz_'Z;Ilng’Z’ %—’ZNIG';_Z1 ﬁ_*ZNkﬁi A'_'Akv (3)
where k-dependence is denoted by index k. We will be limited here only to lower
derivatives terms in the reduction of Iy, i.e. higher-derivative coupling constants
may be considered as free parameters.

Choosing §uv = gur (then ghost term disappears) and projecting the evolution
equation on the space with low derivatives terms one gets the left-hand side of
the evolution eq. (2) as following:

BiT4[g, ] = 262 / 482 /5 [~ R(9)0: 2k + 20¢ (Zaihw)]. (4)

The initial conditions for Zyi, Ax are choosen as in ref. [6)].

The right-hand side of evolution equations may be found after very tedious
calculations (choosing de Sitter background R,, = 1/4g,, R, calculating the path
integral, making expansion on R). We drop the details of these calculations.
The final system of non-perturbative renormalization group (RG) equations for
Newtonian and cosmological constants is obtained as following:

8egx = [2 + nn (k)] gk, (%)

where gx is the dimensionless renormalized Newtonian constant,

g = k*Gr = k*Z5,G.
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The anomalous dimension ny(k) is given by

nn (k) = gi Bi(@ax, Bak, Y2k 62¢) + 1 (k) gk Ba(czk, B2ks Y2k, 62k), (6)

where

Bi(azk, Bak, Y2k, b2x) = 2 {108} (azk) + 108} (Bar) —

~1081(0) + 2@} (yax) + 281 (62x) — (60ay + 5) ®3(cx2i) — (6081 + 5) B5(Bax) +

24

g3

— 6)82(0) ~ 127, 82(vzs) - 1251¢§(5,k)} ,

1 - - "
Bs(aak, Baks Y2k 62k) = T2 {5&1(azx) + 581 (Bax) + 721(0) +

81 (yme) + 81(62¢) — 30(exs + 1)) — H0(B1 + 73)83(B) -

~383(0) — 67183 (var) — 66:193(62x)} -

Here
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= {1 -k )
= T { * [1 K2VI(K ~ 3)]

Note that K =3f2/(f? + 2v%) what corresponds to the choice of so-called gauge-
fixing independent effective action (for a review see [1, 11]). By this choice, we
solve the gauge-dependence problem {(for a related discussion in case of Einstein
gravity, see [7]). The functions &2(w) and &2 are given by the integrals

1 bl RO)(z) — 2ROV (2)
=_— dzz""?
I(n) / ’

[z + RO(z) + w]r’
(10)
- _ 1 o RO)(z)
@f,(‘w) = -IW j dzz"1 [z - R(O)(z) " w]p.

Solving (6)
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9k B1( Ak, 5x)

11
1 — gxBa (A, &)’ (1)
where &2 = k2/k?, X = A\i/k%, we see that the anomalous dimension 7y is a

non pertubative quantity. The evolution equation for the cosmological constant is
obtained as following

nn (k) =

Be(Ak) = — (2 — nw (k)] e + Z—; {1023 (ccax) + 1083(2) ~ 1023(0) +

+283 (v2x) + 283 (62x) — v (k) (583 (azx) + 583(Bax) +
+783(0) + ®3(var) + &3(52x)] } - (12)

Eqs. (5) and (12) with (11) determine the value of the running Newtonian
constant and cosmological constant at the scale k¥ << Acut-opf. Above evolution
eqs. include non-perturbative effects which go beyond a simple one-loop calculation.

Next we estimate the qualitative behaviour of the running Newtonian constant as
above system of RG equations is too complicated and cannot be solved analytically.
To this end we assume that the cosmological constant is much smaller than the
IR cut-off scale, M\ << k%, so we can put )z =0 that simplify Eqs. (8) and (9).
After that, we make an expansion in powers of (Gk?)~! keeping only the first
term (i.e. we evaluate the functions &7(0) and &2(0)) and finally obtain (with
gk ~ k*G)

Gr =G, [l —wGk? + ..}, (13)

where

1 1 2 Tn?
w=—2B1(0,0) = - [(5o+ 22{/—2) - T] .
In case of Einstein gravity, similar solution has been obtained in refs. [6, 7]. In
getting (13) we use the same cut-off function as in [6).

We see that sign of w depends on higher-derivative coupling constants:

Tn2  22f%
3t =t
The coupling constant »? may be choosen to be negative (see [1]). So, for
example for f2 =1, 12 =41 we get w > 0 and Newtonian coupling decreases
as k? increases; i.e. we find that gravitational coupling is antiscreening. On
the contrary, for f2 =1, v2=—-1/2 we get w < 0 and screening behaviour for
Newtonian coupling. It means that in such phase gravitational charge (mass) is
screened by quantum fluctuations, or, in other words Newtonian coupling is smaller
at smaller distances. The sign of quantum correction to Newtonian potential will
be different also.

Note that above quantum correction to Newtonian coupling constant has been
calculated in ref.[10] using one-loop approach and perturbative RG equations.
It is clear that result of such calculation is different from the one presented
above as we use nonperturbative RG method. Moreover, as it has been noted
at the beginning the theory under discussion is multiplicatively renormalizable in
perturbative approach, but most likely it is not unitary in such approach. Hence,

w>0, if 50— >0, (14)
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the perturbative results may not be trusted in many situations. On the contrary,
within nonperturbative approach the theory is considered as an effective theory, so
the problems with non-unitarity are not important. The possibility to get some
nonperturbative results in models of QG in four dimensions looks very attractive
and may help in the construction of new QG models.

Thus, we found that Newtonian coupling may show screening or antiscreening
behaviour in R?-gravity what depends on higher-derivative couplings. That shows
explicitly that R? quantum gravity may lead to different physical consequences
than Einstein gravity even at low energies.

This work has been supported by COLCIENCIES (Colombia), GRASENAS
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