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The manifestly supersymmetric four-dimensional Wess-Zumino model with
quenched disorder is considered at the one-loop level. The infrared fixed points of
a beta function form the moduli space M = RP?, where two types of phases are
found: with and without replica symmetry. While the former phase possesses only
a trivial fixed point, this point become unstable in the latter phase, which mey be
interpreted as a spin glass phase.

PACS: 75.10.Nr

L.Introduction. There are a great many field-theoretical models describing a
system in quenched random fields or with random coupling constants [1-3], etc.).
In solid state physics such models naturally arise from the corresponding pure
systems whenever impurities are introduced. It is interesting to extend randomness
to other well-studied field theories, just as, for example, disorder was implemented
into minimal conformal models in [3]. It was shown in [4] and subsequent papers
that stochastic equations as well as the field theories in the presence of random
external sources often prove to possess some hidden supersymmetry. Kurchan [5]
endorsed this result for spin glass dynamics. Because supersymmetry can handle
perturbative corrections, such random theories are especially interesting. Such an
approach will be taken in this paper.

On the other hand in field theories with manifest space-time supersymmetry
the superpotential is a holomorphic function not only of fields but also of the
coupling constanis [6]. Therefore the couplings and fields enter the potential on
an equal footing, so that it seems very natural to introduce a random (Gaussian)
distribution of some couplings in the Lagrangian. But the power of supersymmetry
is so strong that the superpotential gets no quantum corrections [6], (7], i.e.,
provided that the coupling has no dynamical D-terms, integrating over it solves
the problem.

In Section 2 we formulate a four-dimensional supersymmetric Wess-Zumino
theory in a random field. in Section 3 the infrared fixed points of ome-loop
[-functions are found in the context of the replica method. Analysis of these
fixed points suggests the existence of two phases on the moduli space M = RP2.
Numerical evaluation of the most general expressions is eventuated in the phase
diagram, which is illustrated by two simple examples in Section 4. Section 5 is
devoted to discussions and conclusions.

2.Wess—Zumino model perturbed by randomness. It follows from the
above arguments it follows that the SUSY analog of a theory with disorder must
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contain dynamical terms for the random field. In the present paper we consider
a four-dimensional Wess—Zumino model that is the supersymmetric counterpart of
the p*-model (the two theories are defined in the same critical dimension, and the
scalar potential after integrating the auxiliary field in the former model is actually
¢*). Since, according to [7], Wess~Zumino theory is defined only as a low-energy
field theory, we will study the Wilsonian effective action obtained by integrating
over fast modes with momenta A’ < P < A. We thereby define a chiral superfield
¢T<p+01/) +6*F and a random superfield H. In this notation the original action
is?

5= / d*zd?0d?9(g®+*® — @+ H — H*d + %H*H) +
1
+3 / d*zd?60(\{@H? + ;87 H + ;8% + M, H3) + h.c.. (1)

This action admits the following treatment. It may be obtained (for a given set
of parameters) from the usual Wess—Zumino action by the replacement & — &+ H,
as one usually does in a summation over local extrema [2].

One of the most powerful methods of dealing with random fields is the replica
trick [1], which we will use here to solve this “toy” model. It reduces to
introducing n copies (replicas) of our system, integrating out the H field, and
then solving n-replica problem and taking n =0 at the end of the calculations.
After replication the action (1) takes the form

S= / d*zd’0d* 0 (9% ®. - & H — H*®,) + %H*‘H] +

a=1

n
b [ OO (BT + MEH + 28] + K+ hc. @

a=1

As will be shown later, the model depends only on the relative values of the
lambdas, so that one can put them small enough to determine the H field from
the saddle-point equation on the D-term only:

H-uiléa and H+-‘uzﬂ:1§2'. 3)
a= a=

Substituting it back into (2) yields:

S= E:’b=1 f d‘zd’@d’égabéj d;, + (4)
+% fd*zd’G(Zl',b,m A1Pa®p @ + Z:,b=1 ’\Z‘I’zq’b + E:=1 )‘3‘1’2) + h.c.

where gaq = g + 3u, gays = 3u, and the three types of vertices A; = Aju? + Mju?,
A2 = Mu, and A3 =)} coupled differently replica indices. It is the action (4) that
we are going to study.

3. Fixed points of § functions. The renormalization group (RG) equations
for ge; easily follow from the one-loop diagram for the pure Wess-Zumino theory

2)For the sake of simplicity the mass terms are omitted.
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[8]:

d 1 '
dlgnaj\ = 28872 {9’\:2%9?& + 2’\2 ;l[(gac + Gbc)Ged + GacGba) +
c,a= .

+3X223 Z(gﬁc +g) + 29ab ) _(Gac + gbc)] + 9023 Y (acGad + Goegra)} ()

c=1 e=1 ¢,d=1

Taking into account the possible replica symmetry breaking, we take the Parisi
ansatz for gq [l]: the off-diagonal part of g is parametrized by an internal
function g(z) defined on a unit interval = € [0, 1], and the diagonal part is g, = 4.
The replica-symmetric case is obtained by putting g(z) =g =const. The algebra of
Parisi matrices a=(d,a(z)) is defined by the multiplication rule [1}:

c=ab: '=&5—-/(; dza(z)b(z)
o(z) = b(z)[a - / dza(y)] + a(z)[b - / dzb(y)] ~ (6)
- / " dy(a(z) ~ a(v))(b(z) - b(y)).

By means of this rule we get sums over replica indices that appear in (5) in
the n — 0 limit:

n n n
Zgac-ﬂﬁ-—ﬁ Z gacgcd_’(g"'g)z Zgchgz_gz (7)
b=1 c,d=1 b=1
where . ] .
g-/ dzg(z) and g2 =/ dzg®(z) (8)
0 o .

SAs usual in spin glass theory, one deals with the problem of finding the
infrared (IR) fixed points®) of Eq. (5), which determine the dynamics of the
system:

3 — . _

32367 + (M + 3} — 9)° + X2 Aa[25(5 ~ 9) + §° ~ 97 =0 9
3 -
5'\392(2) + (A3 +32023)(F — §)* + A2ra29(z)(§ — §) + 52 — ¢2] =0 (10)

For example, the A2 term is produced by the two nonvanishing (with number
of replicas) diagrams shown in Fig.1.

These equations have two remarkable properties: they are homogeneous in A
and g, i.e., they depend only on their squares. This type of dependence on X tells
us that the zeroes of the beta functions (9)-(10) do not depend on the values
of the couplings themselves, but only on their mutual ratios, so that the moduli
space of the theory is RP? instead of R3={\;, Az, A3}. Therefore, without loss of
generality, we may put the couplings very small, while keeping their ratios fixed.
In this limit the results that we are going to obtain are exact. Moreover, in what

3)The points where 8 functions vanish.
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gﬂf gﬂ‘

A b 4 A A
b a d Fig.l Surviving (in the n — 0 limit)

d b c A%-contributions

gdb gdc

follows we will assume A3 ¥0, so that we can choose it to be A3 =1 and denote
Az =X and Ay =pu (affined map)‘”. The special case A3 =0 will be studied in the
first example of Section 4.

Quadratic dependence on g in (10) means that for each set of general char-
acteristics, such as g, g2 and §, there are only two possible values g1,2 (if any)
which the function g(z) can take on at a IR-fixed point. Moreover, the same
must be true for §, because formally it also satisfies a similar equation (9). We
are free to chose § = g;, for instance. Let us denote the measure of points on
a unit interval of ¢ where g(z)=g; as 1 — 2o and the measure of points where
g(z) =g, as zo. For example, it may be a stepwise distribution:

=4 91 zo<z<l
9(z) {gg, O<z<zg (11

Thus we have two equations (9), (10) in three unknowns: g;; and zo, with §
and ¢? depending on them. If g; and g, are not simultaneously equal to zero®)
then we actually have only two unknowns: zo and the ratio p= Z%. In this
notation Egs. (9) and (10) may be rewritten as

{ 1+(§A2+2u)z3(1—p)’+§woAE2(l—p)+(l—p2)]=0
p* + (527 + 2u)2d(1 — p)? + w0l [2p(1 — p) + (1 — p?)] =0

which determine both p and zo and, consequently, the phase of the system.

Curiously enough, for a given solution p and zp we get a whole set of RG-fixed
points {g,g(z)}, differing by an arbitrary factor. Of course, this degeneracy will
be lifted by higher loop corrections, so that particular value of the fixed point will
be determined by the full perturbative expansion. In the one-loop approximation,
the explicit data for (§,g(z)) at a fixed point may be determined by the initial
conditions ¢ and wu.

If for some set of couplings there is no solution to (12) except the trivial one
§=g(z) =0, we will refer to this point on the phase space {)\, u} € M = RP?
as a replica-symmetric point and will denote the corresponding phase as “RS”.
Otherwise, replica symmetry is broken with zo being the solution of (12), and the
corresponding phase “RSB” looks like a spin glass system.

Since (12) must be solved by the same p, by equating the solutions to each
equation we get a relation between zo and {A,p} € M. Instead of writing the
resulting complicated formula (partly because it can not be solved for zo), we
display it for zo=1:

,\2+3u+Ai,/g,\2—§u+g,\=A2+3,¢-Ai,/g,\2—gy-gA (13

A 4+3u-2 34+ 4+3u-3) ’

(12)

)If A3 71 then the correct parameters are A = '—;? and u=- %:

5)Otherwise we get a trivial replica-symmetric fixed point.
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where the signs in the two sides are taken independently. Replacing A — zol)
and p — z2u, we get Eq. (13) for arbitrary zo. This expression describes (part
of) a curve in M that separates the RS and RSB phases as shown in Fig.2.
The shaded region indicates a replica-symmetric phase and the unshaded region
corresponds to replica symmetry breaking, where there is a non-trivial solution to
(13), and the trivial point § =g(z) =0 becomes unstable, as will be discussed at
length in the second example of the next Section.

@

Fig.2. The phase diagram (not drawn to

RSB scale)

4. Two simple examples.
a) A3 =0

In this case the beta functions (5) become

dg 1 2. a2
Tnn  a8az 2@ —9)
dg(-‘ﬂ) 1 2

These equations may be easily integrated, with the result:

- . A 5, A
gA = go,A' + 78—1_2/\2 In I
A

A
ga(z) =go,a(z) + m;'\g In A

where the constant A =(§—g)? is determined by the initial conditions and remains
unchanged during renormalization group flow. Since for any A; the only fixed point
is §=g(z) =0, this phase is always replica-symmetric and is not as interesting as
the others.

b) Az =0=2=0
Equations (9) and (10) take the form:

3% +2u(5 ~ 9)* =0
{ o o 2o 9

for which g;;=+g for some g #0 in the SG phase. In parametrization (11)

§=(91—92)20=2g9z0 and g =(g} — g2)xo = 2%z (15)
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Substituting it into (14) yields a nontrivial solution:

—8uzi=1 or zg =

(16)
which exists only for u < —%. It - is the range of u where the RSB phase can be
found. Let us emphasize that it is precisely at these points in M that the trivial
fixed point §=g(z)=0 becomes unstable, for example, against perturbations in §.

To see this, consider §=-¢e: g
e _ 3
Tk e an

where a < 0 if (16) is true (i.e., an arbitrarily small ¢ increases in value during
the flow to low energies). This simple case illustrates the behavior of the general
system (12). On the phase diagram it corresponds to the yx axis, where both the
RS and RSB phases exist.

5. Summary Starting from the (space-time) supersymmetric Wess—Zumino
model in a random and quenched background (1), we have found that the
renormalization group equations (5) at a fixed point are quadratic homogenous
equations in the couplings and in g. The former property allowed us to take the
couplings very small and to reduce the moduli space to M = RP2. There are
two types of points (phases) in this moduli space, those with and without broken
replica symmetry.

Though we have found all IR-fixed points of the one-loop B function, the
stability of the nontrivial fixed points and of the analytic RG flow to them
remain unexplored. Finally, it is interesting to generalize this analysis to more
complex supersymmetric theories and to find realistic models whose critical behavior
correspond to such theories.
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