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SHOCK WAVE STRUCTURE IN SIMPLE LIQUIDS
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Shock wave structure in a liquid is studied using molecular dynamics simulation
method. The interaction between atoms is described by the Lennar—Jones (6-12)
potential. In contrast to earlier works, the simulation is performed in the frame
connected with shock wave front. This approach reduces non-physical fluctuations
and makes it possible to calculate the distribution functions of kinetic and potential
energy for several cross sections within the shock layer. The profiles of flow
variables and their fluctuations are found. The surface tension connected with
pressure anisotropy within the shock front is calculated. It is shown that the main
contribution to the surface tension coefficient comes from the mean virial.

PACS: 02.70.Ns, 62.50.+p

The internal structure of shock waves has been extensively investigated both,
experimentally and theoretically (see, e.g., [1-13]). Earlier theoretical studies of
shock wave structure were based either on hydrodynamic approximation (which
is valid for weak shock waves onmly) [2-5], or on the Boltzmann kinetic equation
(which holds for rarefied gases only) [6-8]. Thus, only certain limiting cases
have been studied. More recently, the direct Monte-Carlo and molecular dynamics
(MD) simulation methods have been employed to study the shock wave structure
in solids, liquids, and dense gases (see [9-13]). These simulation works have,
however, the common disadvantage of large nonphysical fluctuations. Owing to
these fluctuations, important characteristics of the shock layer (e.g., the evolution
of velocity distribution function across the layer) have not been studied up to
now. There are two main reasons for high level of fluctuations in the MD
shock wave simulations. First, in the major part of simulation works, a standard
statement of the problem is used, when a shock wave is generated in a fluid at
rest by a moving piston. As the result, the shock wave is non-stationary in the
laboratory frame. Second, the number of particles in the MD cell is typically
about few thousands which is not sufficient for quantitative description of shock
wave structure. In the present work we use a special potential configuration, which
makes it possible to generate a shock wave at rest in the laboratory frame, and
employ the so-called Langevin thermostat to create the upstream fluid flow with
given mass velocity and temperature. The number of atoms in our simulations was
typically an order of magnitude larger than in the works [10,11,13]). This approach
substantially improves the quality of simulation and allows to trace the evolution
of the kinetic and potential energy distributions across the shock layer. Since the
kinetic energy distribution within the shock layer is nonequilibrium, the concept
of local temperature is not applicable. We use in this work the mean square
fluctuations of the longitudinal and transverse velocity components to describe the
transformation of kinetic emergy of the upstream flow into thermal energy of the
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downstream flow. We employ also the pair correlation function (which depends
on the transverse. coordinates (z,y)), calculated for several planes z =const within
the shock layer, to describe the evolution of the fluid structure during the shock
compression.

The interaction of atoms in a simple liquid is described in this work by the
Lennard-Jones (6-12) potential {LI-potential):

U(r) =4e[(a/r)"? = (a/r)°). (1

We will use thereafter the MD units determined through the parameters of the
potential (1). The results of calculations will then be valid for any LI-fluid. The
parameter o is chosen as the unit of length, and the parameter ¢ as the unit of
energy. It is convenient to chose the particle mass equal to 48 MD units. The
units of time and velocity’ are then o+/m/48¢ and +/48¢/m, respectively. For
example, for argon atoms, the unit of length is ¢ =0.3405 nm, the unit of time
is 0.31144 ps, the unit of energy (temperature) is e=1.654-10"1 erg =119.8 K,
the unit of velocity is 1.0933 km/s, and the unit of denmsity is 1.6825g/cm>. The
rectangular MD simulation cell is similar to that used in our previous work [14].
It has the dimensions L; x Ly x 2L, with periodic boundary conditions imposed
along all the three coordinate axes. The flow velocity is directed along the z-axis.
Short-range potentials Ut and U~ are located at the opposite sides of the MD cell
and satisfy the condition that the forces U*t/8z=08U~/8z=0 at z2==L,. Since
the accelerating U+t and decelerating U~ potentials have different magnitudes, the
atoms crossing the boundary of MD cell change their energy. To form a uniform
upstream flow with given temperature 7} and mass velocity V; =V;,, the Langevin
thermostat [15] is used. The thermostat constitutes a part of MD cell, in which
the atoms are subjected to Langevin force

dU‘-a/dt "ﬂ(Vl6.', - U?) -+ f.'(t) (2)

where G is the friction coefficient, £;(t) is Gaussian random force (”white noise”),
the subscript i = z,y,z, and the superscript @ numbers the atoms. To obtain a
prescribed temperature 73, the parameters of Eq.(2) should satisfy the condition
(f,’) = 26Ty /At, where At is the time step of integration, and the temperature
is expressed in energy units. The equations of motion are integrated using the
8th order Stoermer method, which was previously used in Refs.[14,16,17] for MD
simulation of shock waves in L-J-gases and the liquid-gas phase transition. The
details of the algorithm are described in [14].

Consider typical examples of simulation. The parameters of shock waves for
two different Mach numbers (M = |V;| for liquid argon) are presented in Table.

Vi Va ny ng | T; I 1T Tu ¥
248 11611076 11.17 1103 ] 78 [ 195 590 [ 40.93 46.83
405 12741076 | 1.37 | 1.04 | 48.65 | 1.42 | 49.36 | 120.14 | 169.50

The shock wave thickness presented in Table is defined as
I, = (n2 — n1)/(dn/dz)maz-

In Fig.l, the profiles of mean square fluctuations of the longitudinal (curve
n) and transverse (curve 7) components of molecular velocity are presented. The
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Fig.l. Spatial profiles of mean-square fluctua- Fig.2. Spatial profiles of normal (n) and tan-
tions of the longitudinal (n) and transverse () gential (r) pressure components in stationary
velocity components in stationary shock waves. shock waves

Upstream velocities are curve I - |V = 2.48

and 2 - [Vi|[=4.95

simulation reveals that the fluctuation of the longitudinal velocity component,
T. =48 (v, — 7z)%), grows faster than the fluctuation of the transverse component,
T, = 48 (v2). Similar phenomenon has been observed in dense gases [16]. It
can be attributed to the fact that the transformation of the energy of ordered
motion along the z-axis into the energy of random (thermal) motion along the
€, y-axes requires large-angle scattering. This transformation proceeds slowly since
it is connected with high energy tail of particle distribution. By contrast, a similar
process resulting in the thermalization of the z-component of velocity is not much
connected with the tail of the distribution function, and has a higher rate. Note
that the function 7,(z) has a maximum within the shock front at sufficiently
high Mach number. The difference between T, and T leads to the anisotropy of
pressure within the shock layer and to the effect similar to the surface tension.
The pressure in the case under consideration is a symmetric tensor, rather ‘than a
scalar. In general nonequilibrium case, the pressure tensor can be calculated using
the procedure described in Refs.[18,19] and the results of MD simulation. The
components of pressure are given by

Pa(2) = n(2)Ta(2) - 52 <Z Za 80 (ret) 5, )> (3a)

Tab ar,,,,

P,-(z) = n(z)T (z) o <z (-‘8 st yab) BU("'ab)é( Za)> ’ (3b)

21‘,,5 1'

where S is the area of MD cell in z,y-plane. The coefficient of surface tension is
defined as

y= [.00 (Pn — Pr)dz. (4)
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The virial terms of normal and tangential components of pressure P,, P, and the
difference between them ~(z) are calculated in the same way as in Ref.[16] and
presented in Fig.2. Notice that in the case of liquids the main contribution to v
originates from potential energy of particle interaction (second terms in Egs.(3a)
and (3b)), whereas in gases it was connected with kinetic energy of particles (first
terms in Eqs.(3a) and (3b)) [16,20]. The values of "potential” (7,) and "kinetic”
(yr) contributions to the surface tension y are given in Table. As is clear from
Eq.(4), the surface tension is a small effect, proportional to shock wave thickness.
Corresponding correction to the downstream pressure P; is of the order of Pyl,/R,
where R is the radius of curvature of the shock wave. An excess pressure behind
the front of spherical shock wave observed in {21] may be attributed to the surface
tension (see Ref. [20]).

lp(v) A1
2.54

230 25 20 45 40 V2

Fig.3. Distribution functions of the 2- Fig.4. Distribution functions of the potential

component of velocity in different layers nor-
mal to the z-axis: /) -12 < z < -11.8, 2)
2<z2<22 3)25<z<21, 4) 3<z<32,
J5) 35<z2<37, 6) 12 < z < 122, Upstream

energy in different layers normal to the z-axis:
I) -12 <2< -118, 2) 25 < z < 27, 3)
3<2<32 4)35<2<379) 12<z2< 122
Upstream velocity |V)|=2.48

velocity |Vi| =~ 2.48

The effect of surface tension may play an important role in the problem of
shock wave stability. For a plane shock wave, considered as a gas dynamics
discontinuity, the problem of stability with respect to the corrugation perturbations
was first considered in [22]. The analysis showed that, depending on slope of the
Hugoniot curve, the wave may be stable, unstable, or neutrally stable. In the
latter case, small effects connected with finite shock wave thickness might affect
the result. In studies of shock wave stability, it is natural to comsider the gas
dynamic discontinuity as a limiting case of the shock wave possessing the internal
structure. In particular, the stability of weak shock wave can be studied using
the Navier—Stokes equations. The effects of the order of I,/A, where ) is the
perturbation wavelength, would be automatically taken into account in this study.
This approach, however, can not be directly applied to a shock wave of arbitrary
amplitude in the medium with arbitrary equation of state (which is of prime
interest for shock instability studies). An alternative approach, which can be used
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in this case, is to study the stability problem for a gas dynamic discontinuity and
incorporate the effect of finite shock thickness into the boundary conditions in the
form of surface temsion on curved shock surface. The latter approach was used in
Refs. [20, 23] to account for experimentally observed instability of the relaxation
gone in ionizing shock waves in gases (note that in this case the relevant stability
analysis can be performed in hydrodynamic approximation). It is clear, that the
method based on the concept of surface tension offers considerable scope for the
study of neutrally stable (according to [22]) shock waves in liquids and solids.
The above calculated values of 4 can be used in this study.

31 n()
o
2-
14
i Fig.5. The pair correlation function in the up-
stream /) ~12 <z < —11.8 and downstream 3)
12 < z < 12.2 flows, and in the center of shock
0 » layer 2) 2< z2< 22, |[Vi|=248
0.5

The evolution of particle distribution over the velocity component v, across
the shock layer for M ~ 2.5 is shown in Fig.3. It is easily seen that the
distribution functions in different planes normal to the z-axis are deviated widely
from corresponding bimodal distribution. A detailed comparison of the distribution
functions derived from MD simulation with those calculated using the bimodal
distribution shows that, contrary to the case of gases [16], the deviation slightly
decreases with the Mach number increasing.

In Fig.4 the probability density for the potential energy in several planes
z =const within the shock layer is shown. It is seen that the mean value of
potential energy is negative in the upstream flow and positive in the downstream
flow, i.e., the shock compression of a liquid results in the change of sign of
interparticle forces. Corresponding change in the structure of liquid is demonstrated
in Fig.5, where the evolution of the pair correlation function is shown. We consider
the correlation function that depends on two-dimensional distance r between atoms
in a plane z =const. It is seen that the structure of the correlation functions is
totally different from that observed in [16] for the shock wave in a dense gas. The
curves I and 2 are closely similar to each other, and typical for liquid state. The
curve 3 shows that a short-range order exists in the shock-compressed fluid. Since
the potential energy in the downstream flow is positive, the shock-compressed fluid
resembles a system of closely packed spheres.
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