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Theory of a signal transmission in the high-bit-rate optical communication
systems with large variations of dispersion (strong dispersion management) is pre-
sented. It is found that an averaged propagation of & chirped breathing optical
pulse along the line is described by the nonlinear Schroedinger equation with ad-
ditional parabolic potential. The shape of the averaged pulse is an intermediate
state between the sech-type soliton and a Gaussian pulse. Fast decaying Gaussian
wings of such pulses allow more dense information packing in comparison with using
sech-type fundamental solitons.

PACS: 42.30.-d

Ultra-fast optical signal transmission is an example of a successful practical
utilization of the fundamental results of the modern soliton theory. Impressive
results have been achieved recently in the long-distance, high-bit-rate optical data
transmission by using optical soliton (a pulse resulting from a balance between
fiber nonlinearity and dispersion) as an information carrier. The stable, error-free,
multy-channel (10 Gbit/s per channel) soliton transmission has been demonstrated
over the transoceanic distances [1]. Theory of the signal transmission in optical
fiber lines is based on the nonlinear Schroedinger equation (NLSE) that has
been integrated by Zakharov and Shabat in 1971 [2]. The NLSE is one of
the fundamental nonlinear models integrable by means of the powerful method of
the inverse scattering transform. Properties of the sech-profile soliton solution of
the NLSE determine features of the optical communication lines exploiting soliton
concept.

One of the main factors limiting transmission capacity achievable by the modern
optical soliton-based communication systems [3] is the interaction between two
neighbouring solitons. Overlap of the exponential tails of the closely spaced pulses
leads to the interaction of the solitons and the information loss. To provide for
a stable transmission, a separation between two neighbouring fundamental solitons
should be not less than five soliton widths. This is a principal limitation for a
transmission based on the soliton with sech shape described by the NLSE.

One possible way to increase transmission capacity is to use as an information
carrier a solitary wave with the wings decaying faster than exponential tails of
the NLSE soliton. This would result in a substantial suppression of the soliton
interaction and, consequently, in a possibility of a more dense information packing.
This Letter presents a theory of the nonlinear communication systems that allow
a stable transmission of a soliton with fast decaying tails. Specifically, we describe
a propagation of a soliton with Gaussian wings in optical transmission systems
with dispersion compensation.
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Dispersion compensation technique has been put recently into the focus™ of
intensive research as a promising approach to increase transmission capacity of
optical communication systems both in linear and soliton regimes (see e.g. [4-1J]
and references therein). In the linear regime, compensation of dispersion prevents
dispersive broadening of the pulse. An additional advantage is that the impact of
the four-wave mixing on a signal transmission is suppressed due to the reduction of
the efficiency of the phase matching. In the soliton regime, numerical simulations
and experiments demonstrate extremely stable propagation of a soliton in the fiber
links with dispersion compensation. Large variation of the dispersion leads to the
breathing-like oscillations of a pulse width on the amplification distance, a “slow”
dynamics on the larger scales is determined by the fiber nonlinearity and residual
dispersion [7]. Numerical simulations reveal the following features of the breathing
soliton:

— the form of the asymptotic pulse is closer to a Gaussian shape rather than
to a sech-profile;

— a forming pulse is chirped (pulse phase has nontrivial time-dependence);

- energy of the stable breathing pulse is well above that of the NLSE soliton
of the corresponding average dispersion.

These observations make clear a difference between soliton-like pulse in a system
with dispersion compensation and the soliton of the NLSE. This indicates that an
average model describing evolution of the breathing pulse should differ from the
NLSE.

In this Letter, a basic equation describing slow dynamics of the chirped pulse
in the transmission systems with strong dispersion management is derived in the
leading order. It is found that the average propagation of the chirped pulse is
described by the NLSE with additional quadratic potential. It is demonstrated that
a stationary pulse is an intermediate state between the NLSE sech-type soliton
and a Gaussian pulse. The theory of the soliton with Gaussian wings propagating
in the transmission systems with dispersion compensation developed in this Letter
explains numerical and experimental observations mentioned above.

Optical pulse propagation down the cascaded transmission system with dispersion
compensation is governed by

“ N
14, + d(2)Au + |APA=iZnp (=7 + [exp(vZa) — 1] Y _6(z — z))A =i G(2)A. (1)
k=1

We use here notation of [7]: Zyz =1/0Py is the nonlinear length, Z4, =t2/|3,| -
the dispersion length corresponding to the transmission fiber (standard mono-mode
fiber (SMF)); to and P, are an incident pulse width and peak power, (3, is
the group velocity dispersion for SMF; o is the coefficient of the nonlinearity,
v describes fiber losses. Retarded time is normalized to the initial pulse width
t=T/ty, an envelope of the electric fild E = E(T,Z) is normalized to the initial
pulse power |E|?2= Py|A|?, and the coordinate along the fiber z to the nonlinear
length 2=2/Znp, Z, is amplification period, z; = kz, are the amplifiers locations.
Chromatic dispersion d(z) = ~(z) + (d) presents a sum of a rapidly varying part
(d~ 2ZN1/Z4is > 1) and a constant residual dispersion ((d) ~ ZnL/Zrp ~ 1), here
Zrp = 1%/|B2rp| is a dispersion length corresponding to the residual dispersion
of each section. The simplest optical-pulse equalizing system consists from a
transmission fiber and equalizer fiber with the opposite dispersion - dispersion
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.compensating fiber. Incorporation of a fiber with normal dispersion reduces (or in
the ideal case eliminates) total dispersion of the fiber span between two amplifiers.
Term strong dispersion management means that a variation of the dispersion on the
amplification period is large. Consequently, not only pulse power, but also pulse
width experiences substantial variations during the amplification period. Formally
this can be formulated as a condition R(z)= f; d(z’')dz' > 1.

As was mentioned, an optical pulse propagating in a system with large variation
of dispersion experiences periodic oscillations of the amplitude and width. The
breathing rapid oscillations of the pulse are accompanied by slow average changes
of the pulse characteristics due to nonlinearity and residual dispersion [7]. In the
limit Z,,Z4, € ZN1, Zrp, one may treat the nonlinearity and residual dispersion
as perturbations. Therefore, let us first recall the well-known exact solution of the
linear problem. Neglecting nonlinear term in Eq.(1) fast oscillations of the linear
pulse amplitude and width for a Gaussian input signal A(0,t) = N exp(—t?) are
given by

A(z,t) = \/i_v(—z—j exp(—t?/1%(2) — iCt?/7%(2) + 1Z‘I>(:e))exp(/0z G(z')dZ"), (2)

here 7%(z) = 1+ 16R%*(z), dR(z)/dz =d(z), C =4R(z) and & = —0.5arctan [4R(z)].
This solution shows that the pulse is highly chirped in contrast to the soliton
solution of the NLSE. We demonstrate later that this chirping leads to the effective
parabolic potential in the equation describing slow dynamics. Nonlinear effects come
into play on a large scale compared to Z,, namely on the distances proportional
to Zyr. Nonlinear length Zy; can be comparable with Zrp. Therefore, in the
description of the average evolution of the pulse, it is necessary to take into
account both the residual dispersion and nonlinearity. Thus, there are two scales
in the pulse dynamics [7]: fast processes correspond to the large oscillations of
the amplitude and the width of the pulse; and slow dynamics giving the average
changes due to nonlinear effects and residual dispersion. Fast oscillations are
only slightly modified by nonlinearity and residual dispersion. Note that the slow
average dynamics is respomsible for the stability of signal transmission. Our goal
now is to average Eq.(1) keeping general structure of the rapid oscillations given
by (2).

Large variation of the dispersion on the amplification period is the main
obstacle to the direct application of the powerful Lie-transform [16] method to
obtain averaged (slow) dynamics in Eq.(l1). The main technical idea of the
approach suggested here is to use first a transformation that accounts for a fast
pulse dynamics and to apply averaging procedure to the transformed equation. As
we demonstrate, this allows one to derive an averaged model that is the NLSE
with additional parabolic potential responsible for a formation of the Gaussian
wings of the soliton. This procedure is a modification of the averaging procedure
used in [7]. Important difference is that in the approach developed here, a pulse
chirp (phase dependence) is accounted by an exact transform, and, therefore, a
local (nonintegral) average equation is obtained. Since nonlinearity and residual
dispersion acts as small perturbations to the linear dynamics, to start with, we
assume that a pulse dynamics will be close to a structure given by Eq.(2).
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Let us make the following transformation that is similar to the so-called ”"lense”
transformation first suggested by Talanov in the theory of self-focusing [17]

=962 ex iu(z) M ex ’ 2')d2’ 3
4(6)= I expts e o [ ()02, €

here £ =t/ and
dr/dz = 4d(z)v . 4)

Eq.(1) is transformed to

<(

i@, + Lo+ Digrg - rneg-o. (5

We still have freedom to choose the equation for v,. Let us fix the latter as
v, =a2[d—£§—) ) () = exp(2 / G(')d7'): (6)

Note that Eqs. (4), (6) have been derived in [7] using variational approach,
but here these equations describe exact transformation of the Eq.(1). Neglecting
nonlinearity one can find exact linear solution of these equations with initial
conditions 7(0) =1 and »(0) = vg.

2 _ a® +4[(a® + Wd)R(2) + 1/0]2 _(@®+43)R(z) + v, dR _
- e R tro, 8B4y ()

When nonlinear effects and residual dispersion are negligible (R(z,)= R(0)=0)
the pulse recovers its original form. A combined action of the residual dispersion
and nonlinearity modifies the periodic solutions (7) and they cannot be expressed in
the explicit form. Numerical periodic solutions of Egs.(4), (6) has been presented

(14]. It should be pointed out that nonlinearity and residual dispersion
presents small perturbation to the linear solution and (7) can be used as a first
approximation of the solution in the general case. As it will be shown below, a
structure of the equation describing averaged dynamics does not depend on the
specifics of the dispersion compensation scheme. However, oscillatory behavior of
the pulse given by 7(z) and v(z) are determined, evidently, by the dispersion map.
Substitution of (6) into (3J) yields

iQ, + @[Qes -a*¢%Ql + c(—Tzl(lQl’Q - a?¢’Q) =0. (8)

The most of presently used in practice dispersion maps d(z) are built from
pieces of fibers with different dispersion (negative or positive). Note that for such
dispersion maps a condition d? > 0 is satisfied. Therefore, in what follows we
consider only dispersion compensation schemes with d? > 0. This allows to rewrite
the coefficient before last term in Eq.(8) as

c(z) _d(z )[d(Z)

ele)r(a)) = 2a(a) 9

815



We introduce here a new variable 2/(z) defined through

After substitution of (9) and (10) into Eq.(8) we get
iQu + Qg ~ a’6°Q + a(2')(1QI’Q - a%¢°Q) = 0. (11)

Variable z' rapidly oscillates and slowly grows during the amplification period in
the case of the anomalous residual dispersion. In the case of periodic 7 and v
the function 2'(z) presents a sum of a periodic function with zero mean value and
a linearly growing part (due to residual dispersion). It is interesting to note that
as a particular case (for a specific dispersion map), our general theory reproduces
results obtained in [18]. Namely, for the special dispersion profile having a form

—_9c®) o [ aruen: = ela):
o) = oy coyfa + 4ytal) = elo)
cosh[2y/a? + 43y(0)] = L1210 a?+ 4y - (12)

a

the function «a(z’) in Eq.(11) becomes a constant. For this specific choice of
the dispersion profile Eq.(1) is transformed exactly to the NLSE with additional
quadratic potential [18]). However, a pulse chirp is not recovered after amplification
period in such a system and additional dispersion compensating element should be
added at the end of each sections.

Now we demonstrate that in the general case of an arbitrary dispersion map
(under conditions specified above), the average evolution of a pulse dynamics in
Eq.(1) is given by the NLSE with additional parabolic potential. The averaging
procedure in a form of the Lie-transform [16] or the method used in [19] can
be applied directly to the transformed Eq.(11). In this Letter we present onmly
the result in the leading order, because already in this order a remarkable new
properties of average soliton arise. Averaging is over one cycle of the variation
of 2’ corresponding to one amplification period. We use also the following useful
relations (here § denotes the integration over on cycle in z')

]fd - / z)dz, fa(z')dz'=/c(r—z)dz. (13)

After straightforward calculations, in the leading order, the averaged equation
describing slow evolution of the chirped pulse due to nonlinearity and residual
dispersion reads

BU 3 U c d

ia - -1+ ) 2{2U+ |U|2U =0; = (r> r2=(;5). (14)
Here (f) denotes averaging over one amplification period in z. Obtained averaged
equation is the main result of the Letter. This equation possesses steady-state
solution in the form of a soliton with Gaussian wings [14, 18]. Energy of such
soliton is above the energy of the corresponding NLSE soliton [20]. Taking into
account that the pulse structure in the original variables is given by transformation
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(3), it is seen that an asymptotic pulse is highly chirped. Thus, our approach
explains the main features of the breathing pulses observed in numerical simulations
and experiments. Comprehensive investigation of a soliton solution of Eq.(14) will
be published elsewhere. Higher-order corrections to Eq.(14) can be found using
Lie-transform technique developed in [16] . Eq.(14) is a Hamiltonian system:

0U _6H 2 1 2/ 217712 1'1/‘ "
= H= 142 L [|upae. (1S
o0 w- [paer 1+ e [ewpa- 2 [ore 1)

Simple scaling analysis of the Hamiltonian indicates that a ground soliton
solution of Eq.(14) is stable. It should be pointed out that if an input pulse
differs from the shape of the soliton solution of Eq.(14), a radiation is emitted
during formation of the breathing soliton. Interaction of the soliton with the
radiation leads to occurrence of slowly decreasing oscillations studied in the case of
the NLSE in [21]. As was found in [14] by numerical simulations of original Eq.(1),
in the general case an asymptotic state presents breathing soliton interacting with
a radiative pedestal.

In conclusions, an averaged equation is derived in the leading order to describe
an asymptotic breathing dynamics of a chirped optical pulse in the transmission
systems with dispersion compensation. This average equation is the NLSE with
additional quadratic potential. It is demonstrated that the breathing pulse shape
is an intermediate state between the NLSE sech-type soliton and a Gaussian pulse.
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