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The binding energies of baryonic systems with baryon number B = 2, 3 and 4 posses-
sing heavy flavor, charm, bottom, or top, are estimated within the rigid oscillator version of
the bound state approach to chiral soliton models. Two tendencies are noted: the binding
energy increases with increasing mass of the flavor and with increasing B. Therefore,
the charmed or bottomed baryonic systems have more chances to be bound than strange
baryonic systems discussed previously.

PACS: 14.20.-c

1. Many efforts have been done lately to investigate the properties of baryonic systems
(BS) with nonzero strangeness, first of all the possibility of the existence of states stable
relative to strong decays.

Recently some of the predictions of theory began to find experimental confirmation.
The near-threshold enhancement in AA system observed in (1] can be interpreted as a
component of 27-plet obtained from the bound SU(2) torus-like configuration with B = 2
by means of collective coordinates method described in [2, 3]. Similar enhancement in AN
system has been observed many years ago in the kaon production reaction on nucleons
[4] and confirmed also in Ap scattering [5]. It can belong to 27-plet or to antidecuplet
of dibaryons. The singlet NN scattering state with isospin T' = 1 belongs to the 27-plet
(for review of theoretical predictions in B = 2 sector see, e.g. [6]). Analogous results are
obtained in more conventional potential approach as well.

The question if the B.S with flavor different from u and d can exist, is more general, of
course. Charm, bottom or top quantum numbers are also of interest. Their consideration
can be performed in the framework of chiral soliton models, in particular, the bound state
approach to heavy flavors proposed in {7} and developed in [8-10]. Although charmed
and bottomed BS have less chances to play some important role in astrophysics than
the strange ones (it is not excluded, however!) their studies can be very useful for
understanding of the peculiarities of nuclear matter fragments with unusual properties. It
might be similar to heavy quarkonia which studies were very important for development
and checking of QCD itself.

Here the baryonic systems with heavy flavors are considered within the rigid oscil-
lator version of the bound state approach to strange baryons proposed by Kaplan and
Klebanov [9] and used later in {10]. This model has definite advantages before collective
coordinates quantization method when heavy flavors are included into consideration, first
of all, because of its simplicity. However, some apparent drawbacks are present also.

2. The ansatz for the chiral fields used in [9, 10] is:

U(r,t) = R(tYUo(r)RI(t),  R(t) = A()S(), 1)
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where Uy is SU(2) soliton embedded into SU(3) in usual way (into left upper corner),
A(t) € SU(2) describes SU(2) rotations, S(t) € SU(3) describes rotations in the ” charm”
or "bottom” direction. For definiteness we shall consider the extension of the (u,d) SU(2)
Skyrme model in charmed direction, when D is the field of D-mesons. But it is clear that
quite similar the extension can be made in bottom and top direction

S(t) =exp(iD(t)),  D(t) = Z D, (t)Aa, (2)

a=4,.

As are Gell-Mann matrices of (u,d,c) or (u,d,b) SU(3) groups. The (u,d,b) SU(3)
subgroup is quite analogous to the (u,d, s) one, for (u,d, ¢) subgroup simple redefiniton
of hypercharge should be made. D4 = (D° + D°)/+/2, D5 = i(D° — D%)/V/2, etc.

After some calculation the well known Lagrangian of the Skyrme model in the lowest
order in field D takes the form [9, 10]:

) .N.B ..
L=—-Myp+40ppDtD —-Tg(m} —m2)D'D +i—<—(D'D - D'D).  (3)
Here D is a doublet formed by D® and D~ mesons, and we maintained our former notation
for the moment of inertia for the rotation into ”strange”, "charm” or "bottom” direction
0. = 0, = 0, = Op. This moment of inertia has simple analytical form for arbitrary
starting SU(2) skyrmion, regardless its symmetry properties:

Ors =g [(1-e)[F2 + 5(@N? + $3(da)? + S2(a00)|r, (40

F, and e are the parameters of the model. The general parametrization of the SU(2)
skyrmions has been used here, U = ¢s + syrn with n, = ¢4, 1y = 8a€8, Ny = 8433,
8y = sin f, ¢y = cos f, etc. For the axially symmetrical ansatz 8 = n¢, ¢ is the azimuthal
angle, and Op,p takes the form drawn in [11]:

2
OFp = %/(1 —cs)[F2+ ;}2-(()‘, f) + 4o, a) + :—zsﬁsi)]rdrdz, (4b)

(f,f) = (8f/0r)? + (8f/0z)%, r and z being cylindrical coordinates. The quantity Lz
defines the contribution of the mass term in the Lagrangian:

F2
p=—[(1- cs)dr. (8)
Numerical values of Op p, I'g and some other quantities are shown in the Table below.
The term in (3) proportional to N.B appears from the Wess — Zumino — Witten term
in the action and is responsible, within this approach, for the splitting between excitation
energies of charm and anticharm (flavor and antiflavor in general case) [8—10]. N, is
the number of colors in the underlying QCD, in all other cases here the index ¢ means
the charm quantum number. B is the baryon number of the configuration which can be
written in terms of the functions f,a and 3 as

212 /s,sa(afaaaﬁ)ds (6)

855



In other words, it is the Wronskian of the system described by 3 profiles, f, a and
B [2]. For the axially symmetrical configuration possessing also symmetry z — —z,
B = n(f(0) — f(o0))/m = n for configurations of lowest energy.

The zero modes quantum corrections due to rotation with the matrix A(t) have the
order of magnitude N ! and are not crucial but also important (see also section 4).

3. After the canonical quantization procedure the Hamiltonian of the system takes
the form:
2 p2
N?B )D'D —i N.B

Hp =Man+ 160F,B F.B

I + (Tpm3 +

(p'u-uto), (n

9FB

m%' = m3, — m2. The momentum II is canonically conjugate to variable D. Eq. (7)

describes the oscillator-type motion of the field D in the background formed by the (u, d)
SU(2) soliton. After the diagonalization which can be done explicitely according to [9, 10]
the Hamiltonian can be written as

Hp = Myp +wp,pata + @pgblb + O(1/N,) (8)

with a', bt being the operators of creation of charm and anticharm (bottom and antibot-
tom) quantum number, wr,p and &F p being the frequences of heavy flavor (antiflavor)
excitation. D and I are connected with a and b in the following way [9, 10]:

. . . +/N.B .
_ 1 (az + bt’), I = _“F_B( i b‘h)

i

= 9
vV NcBﬂ'F.B ( )
with
ur.B = (1 + 16mYTOp s/ (N.B)?)'/2.
The flavor (antiflavor) excitation frequences w and @& are:
N.B N.B
WF,B = 8@ch (erB-1), @rB= 80r, (P'FB +1). (10)

It should be noted that the difference @p g —wr p = N.B/(40r, g) coincides in the leading
order in N, with that obtained in the collective coordinates approach {12, 13]. Indeed,
in the collective coordinates approach the zero-modes energy of the soliton rotated in the
SU(3) configuration space and depending on the "flavor” inertia @ g can be written as:

E,ot(®F,B) = [NeB + ngg(NeB + 2ngg + 2 - 2Ty)], (11)

1
40Fp
where ngy is the number of additional quark-antiquark pairs present in the quantized
state, N.B + 3ngz = p + 2q, p,q are the numbers of indices in the spinor describing
the SU(3) irrep, T, = (p + ngg)/2 is the so called right isospin characterizing irrep (see
[13] where the B = 1,n4 = 0 case was considered, and [12] where (11) was obtained
for N, = 3). The term proportional to nggN.B in (11) coincides with the difference of
@r,p — wr,B in (10).

For the difference of the frequences of excitation in cases of B > 2 and B = 1 systems

we obtain: 2 12
]
Ag~ e T _(I= ) 12)
2 |\ Or: Ors
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It is proportional to the heavy quark mass mr and is positive if I'1 /@Fp,1 > I'p/OF,5.
For B = 2,3 it is really so. The characteristics of SU(2) toroidal solitons with baryon
numbers B = 2,3 and 4 have been calculated previously [14]. For B = 2 they coincide
with good accuracy with those given later in [10]. For greater baryon numbers some
configurations of lower energy have been found [15, 16], but necessary quantities like
Op,p and I'p are absent, still.

As a result, the binding energy of heavy flavored dibaryons, tribaryons, etc. increases
in comparison with strange flavor case, as it can be seen from the results of numerical
estimates shown in the Table.

4. The ~ 1/N, zero modes quantum correction to the energies of BS can be estimated
according to the expression [9, 10]:

AEl/Nc [CFBT (T + 1) + (1 —CF, B) (I + 1) + (EF,B — CF,B)T(T + 1)], (13)

2@
where I is the isospin of the BS, T, is the quantity analogous to the "right” isospin T,
in the collective coordinates approach [3, 11, 6], and T, = ¥ + T '

Or.8
OrB(ur,B)?

In the rigid oscillator model the states predicted are not identified with definite SU(3) or
SU (4) representations. However, it can be done, as it was shown in [10]. The quantization
condition (p + 2¢)/3 = B (3] for arbitrary N, is changed to (p + 2q) = N.B + 3ng3. For
example, the state with ¢ = 2, I = 0 and ngz = 0 should belong to the 27-plet of (u,d,c)
SU(3) group, if N, = 3, see also [10]. For 27-plet of dibaryons T, = 1, for antidecuplet
T, = 0. For 35-plet of tribaryons T, = 1/2, for arbitrary (p, ¢) irrep which the BS belongs
to T, = p/2 if ngg = 0. I and T take the lowest possible values, 0 or 1/2 in our case. If
©r — oo Eq. (13) goes over into the expression obtained for axially symmetrical BS in
collective coordinate approach [11], in realistic case with @r/®F ~ 2.7 the structure of
(13) is more complicated.

The quantum correction due to usual space rotations, also of the order of 1/N, is
exactly of the same form as obtained in [11], see [9, 10]. The binding energies shown in
the Table are defined relative to the decay into B baryons, nucleons or flavored hyperons.
The binding energy, e.g. of B = 4 state relative to 2 dibaryons will be smaller or negative.
Since we are interested in the lowest energy states we discuss here the baryonic systems
with the lowest allowed angular momentum, J = 0 for B = 2, 4, and J = 3/2 for
B = 3. The latter value is due to the constraint because of symmetry properties of the
configuration. The value J = 1/2 is allowed for the configuration found in [15].

For B = 3 and 4 toroidal configurations we used here do not correspond to the
minimum of static energy, but only for such configurations the necessary quantities, Oz,
I'p are known. For B = 3 the toroidal configuration does not differ much in energy from
the tetrahedral one which is known to be the configuration of minimal energy [15, 16].
(The masses of stranglets obtained from bound skyrmions with B up to 17 {16] have been
estimated recently in [17] in the bound state soliton model.) For B = 4 the difference
is large, ~ 300MeV in energy. However, it would be incorrect to decrease all B = 4
energies by 300 MeV and increase the binding energies, because other characteristics of
solitons and, therefore, the excitation energies w, and wy also change. Some reasonable
extrapolation for B = 4 is shown in the Table.

OB

=1 . L -1 , ¢ =1- -1). 14
B Orirs (urB —1) €F,B (prB—1) (14)
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s

Mas | O©rp | Or8 | ©@s8 | T w, We wp

0.865 1.86 5.14 5.14 3.98 0.200 | 1.18 | 3.66
1.656 3.79 10.55 16.45 | 7.80 0.196 | 1.156 | 3.62
2.523 6.16 16.85 | 37.85 | 12.85 | 0.205 | 1.17 { 3.63
3.446 8.84 23.65 | 72.5 18.80 | 0.215 | 1.19 | 3.68
3.140 — — —_ — 0.196 | 1.15 | 3.62

#*

o W

B €s=—2 €e=1 €c=2 €h=—1 €b=-2
1 —_— —_— —_— —_— —

2 0.096 0.16 | 0.15 | 0.17 0.19

3 0.12 0.22 | 0.23 | 0.26 0.27
4 0.18 0.23 | 0.21 | 0.25 0.25
4* | 0.52 0.58 | 0.61 | 0.60 0.65

The static characteristics of the B = 1 hedgehog and toroidal solitons with B = 2,3,4 [14]: My B in
GeV, moments of inertia Op,p = O, = 6y, @7, @y and ' in GeV~1. The excitation frequences Wa,c,b
~ in GeV. The binding energies (in GeV) of baryonic systems with B = 2,3,4, S = -2, charm ¢ = 1,2
(€c=1,2) and bottom b = —1, -2 (ep=—1,—2) are shown. The parameters of the model Fr = 108 MeV,
e = 4.84 [3]. The line B = 4" shows the binding energies for B = 4 configuration found in {15, 16] with
extrapolation wp—4 = wp=2. The uncertainty of these estimates within our choice of the model and
configurations is ~ 0.02 GeV.

5. To conclude, we estimated the binding energies of dibaryons, tribaryons and tetra-
baryons with nonzero charm and bottom. For the top quantum number the necessary
data for the meson masses are not available, but similar results also can be obtained.
When the mass of the meson with £ = 1 was taken m; = 175 GeV the w; turned out to be
close to 130 GeV, therefore, the energy of the top-baryons is smaller than it should be, by
several tens of GeV. It turned out also that the state with B = 2, ¢ = 1 is lower in energy
than baryon with ¢ = 1 by ~ 1.5 GeV, and hyperon A; could decay into B = 2 state with
t = 1 and antinucleon. In view of considerable uncertainty of our approach this result
should be checked in other variants of the model. Moreover, large width of the ¢t-quark
makes this consideration doubtful.

The apparent drawback of the approach exploited in the present paper is that the
motion of the system into the ”charm” or "bottom” direction is considered independently
from other motions. Therefore, consideration of the BS with "mixed” flavors is not
possible here; it demands more complicated treatment.

Since the binding energies increase with increasing mass of the flavor, the charmed
and bottomed baryonic systems have more chances to be bound than strange BS. This
is in agreement with the experimental fact that ¢¢ and bb quarkonia with JF = 1~
are bound stronger in comparison with s3-relative to lightest psendoscalar mesons with
corresponding flavor. Nonzero quantum corrections to the energy of charmed (bottomed)
baryonic systems are expected to be smaller in comparison with strange baryonic systems,
because of the greater mass of charmed (bottomed) quarks or mesons.

The rigid oscillator model by Kaplan — Klebanov — Westerberg we used here generally
underestimates the masses of the quantized states if the masses of the nucleon and A-isobar
have been fitted on the start [9, 10]. At the same time, the collective coordinates approach
with the rigid or soft rotator variant of the model usually overestimates the masses of
baryons [3, 11, 18]. One of the sources of this difference is the presence of the zero-modes
contribution in the rotation energy of the order of N./@p, see (11) [13, 11, 18], which is
absent in the oscillator model. As it was shown recently by Walliser for the B = 1 sector
[13] this large contribution is cancelled almost completely by the 1-loop correction — zero-
point Casimir energy which is of the same order, N? [19]. Anyway, since both approaches
led to similar results in the case of strange baryonic systems, we may expect the same
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for the case of charmlets and bottomlets, so, our results should be valid qualitatively, at
least.

The production of states with ¢ = 1 and even ¢ = 2 will be available on accelerators

like future Japan Hadron Facility (energy ~ 50 GeV), but the production of bottomlets
requires higher energy.

I am indebted to H.Walliser for useful discussions of the skyrmions quantization at

arbitrary N, and Ng.
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