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Internal structure of shock wave front in a gas is studied using molecular dy-
namics (MD) simulation method. A new approach to MD shock simulation is used,
which enables to consider a stationary shock front at rest and radically improves
the quality of simulation. The profiles of flow variables and their fluctuations are
calculated. The evolution of the velocity distribution function across the shock layer
is calculated and compared with the bimodal distribution. The pair distribution
function in the shock layer is determined. The surface tension associated with the
shock wave is estimated.

PACS: 47.40.Nm, 47.45.-n, 51.10.+y

The shock wave is a principal element of gas-dynamics flows. Since the changes
of flow parameters across a shock wave front are uniquely determined by the
conservation laws and do not depend on the internal structure of the fromt, the
shock wave is considered in gas dynamics as a structureless discontinuity. In the
kinetic theory, the shock wave is treated as a transition layer of finite thickness,
and its internal structure attracts particular interest. A major part of shock wave
structure studies has been performed either in the hydrodynamic approximation
[1-3] (which is valid for weak shocks), or on the basis of the Boltzmann kinetic
equation (which holds for low density gases [4-9]). First gas kinetic analysis of
strong shock wave structure was carried out in [4,5] using the so-called bimodal
approximation. It is assumed that the distribution function within the wave may be
represented as a linear combination of two Maxwellian distributions corresponding
to uniform upstream and downstream flows:

fviz) = (1 - a(z)) fi(v) + a(2) f2(v) (1)

where fi(v) is the Maxwellian distribution with the particle number density n;, the
mass velocity u; and the temperature 7; (i =1,2). The subscripts 1 and 2 denote
the uniform upstream and downstream conditions, respectively. The distribution
function (1) does not satisfy the Boltzmann equation. Various equations have been
proposed- in the literature [7] to determine «(z). A comparison with experimental
data shows reasonable accuracy of the bimodal approximation (1), but gives no
way to choose, which of the equations proposed in the literature yields better
results. Note that some of the results concerning the shock front structure obtained
using the Boltzmann equation are in conflict with those obtained in the frame
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of hydrodynamics equations. For example, in the hydrodynamic approximation [1]
the density approaches exponentially its limiting values, n; and n;, as |z| — oo,
whereas the solution of the Boltzmann equation for weak shock wave [10,11] shows
a different asymptotic behavior. It is conceivable that this discrepancy might be
attributed to the fact that only two-particle collisions are taken into account in
the Boltzmann equation.

To calculate the shock front structure in solids, liquids, and dense gases
the molecular dynamics method and the direct simulation Monte Carlo approach
have been employed [9,12-15]. These simulation works have, however, several
shortcomings. In the major part of MD simulations, a plane shock wave is
generated by a piston compressing a fluid which is initially at rest. The resulting
shock wave is unsteady. This approach, along with small number of particles in
the simulation box, leads to unduly high level of nonphysical fluctuations [12-14].
As a result, there is no way to calculate the velocity distribution function within
the shock front with sufficient accuracy. In Ref.[14], for example, qualitative
statements concerning anisotropy and non-Maxwellian character of the velocity
distribution inside the shock front are based on the calculation of the moments of
the velocity distribution. Notice that the interpretation of the simulation results in
[12-15] and other similar works is carried out usually in terms of hydrodynamics
variables, some of which lose their meaning on a molecular scale.

In this work several physical problems related to the internal structure of
shock waves are solved. First, we calculated local velocity distributions at several
points within the shock front. Second, we found the asymptotic behavior of
hydrodynamic variables in the shock wave. Third, we calculated an additional
pressure resulting from shock front curvature (the effect similar to the surface
tension). We consider a shock front which is at rest in a laboratory frame. A
special potential configuration is used which accelerates the gas at one side of the
MD cell and decelerates it at the opposite side. As a result, a stationary shock
wave is formed inside the cell, and the level of fluctuations significantly decreases,
as will be shown below.

We describe the interaction of atoms by the Lennard - IJones potential:
U(r)=4e[(o/r)*? — (6/r)®]. We will use the MD units determined in standard way
[16] through the values of ¢ and . The rectangular MD cell L; x L, x 2L,, has
dimensions 56 x 56 x 240 units. Total number of particles is 32000. The flow velocity
v(z) < 0 is directed along the z-axis. Periodic boundary conditions are imposed
along the three coordinate axes. The short-range potentials Ut and U~ are located
at z=+L, and satisfy the condition that the forces Ut /8z =8U"/8z=0. Since
the accelerating Ut and decelerating U~ potentials have different magnitudes, the
particles crossing the boundary z ==L, change their energy.

To form a uniform upstream flow with given temperature 73 and mass velocity
vi, the Langevin thermostat [17] is used. The thermostat constitutes a part of
MD cell (located in the 100 < z < 116), in which the atoms are subjected to
Langevin force :

Fy¢(t) = Rg(t) ~ B(vg — v1xz) (2)

where the subscript k ==z,y, 2, the superscript a numbers atoms, (3 is the friction
coefficient, and R§(t) is Gaussian random force. To obtain a prescribed temperature
Ty, the parameters of Eq.(2) should satisfy the condition <R2> =28Ti /At , where
At is the time step of integration. The equations of motion are integrated using
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the 8-th order Stoermer method. The details of the algorithm are described in
{18]. The accuracy of calculations may be characterized by the relative amplitude
of fluctuations of the total energy and center-of-mass position. In our calculations
these amplitudes were less than 0.5%.

Going to the discussion of the results of simulations, we consider a typical case
of moderate intesity shock wave {the Mach number M = 12v;//5T) =~ 5.4vy) in
moderate density gas. The parameters of shock waves at Mach numbers 2.65 and
8.19 are specified as:

(a) vi=-049, n;=00235 T,=0.0992,
vy =—0.181, n,=00632, T,=2.97;

(b) wvi=-150, n;=00235, T,=0.983
va=—0.42, n,=0.0837, T,=19.96.

The interatomic distance and the mean free path of atoms in the upstream
flow are of the same order of magnitude: d; ~ 3.5 and A; =~ 6.4 in the case
(b). The parameters of uniform supersonic and subsonic flow satisfy the Hugoniot
equation calculated using the equation of state data for argon taken from [19)].

The number density profile within the shock front is shown in Fig.l. The shock
wave thickness defined as 6 = (ny—n1)/ldn/dz|mac is in agreement with experimental
data cited in in [14]. As noted above, in hydrodynamic approximation the
differences n{z) —ni and n; —n(z) decrease exponentially as |z| — co. The analysis
based on the Boltzmann equation [10,11] suggests that the above differences are
proportional to exp(—k|z|™) with m < 1. It follows from the results of simulation
that m =1.01 +£0.03. This result can be cosidered as an evidence that the kinetic
approach [10,11] is not applicable to the description of asymptotic behavior of flow
variables at |z| — oco. It would be instructive, however, to compute the exponent
m using a larger MD cell.

30 0.15

-
0.10 >
N
T O
0.05
0 ) S 1 N ‘c A A A AL o
-100 -50 0 50 100
z
Fig.l. Density profiles in the shock front (n) Fig.2. Variation of the velocity distribution
and mean-square fluctuations of the longitudi- functions Gy(z,vz) and Gp(z,vz) in the shock
nal (z) and transverse (7) molecular velocity front at M =8.19
components
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The temperature profiles inside the shock front shown in many works make no
physical sense because the temperature is not defined for nonequilibrium states.
The value that is well defined is the mean square fluctuation of particle velocity
(which is equal to the temperature in equilibrium). The simulation reveals that
the fluctuations of the longitudinal (v,) and transverse (vy,vy) velocity components
show quite different behavior (Fig.1}). When moving in the direction from upstream
toward downstream, the fluctuation ((v, ——F;)2> first rapidly increases, then passes
through a maximum, and approaches its downstream value from above. The
fluctuation <v§> increases more slowly and monotonically from its upstream to
downstream value. To understand this behavior we note that the transformation
of the energy of ordered motion along the 2z- axis into the energy of random
motion along the z- axis requires large-angle scattering, which occurs when the
particle velocity is large. Therefore, this process leads primarily to the generation
of high energy tails in the distributions of particles over v, and vy, and the rate
of the energy transformation is rather low. The randomization of the z-component
of velocity is not much cofnected with the tails of distribution function and has
a higher rate.

The evolution of the particle distributions over the velocity components inside
the shock front is shown in Figs.2 and 3. The distribution functions are defined
as

F(z,v,)=/f(z,v)dvxdvy, G(z,vw)=/f(z,v)dvydvz.

The results of simulation (dots, subscript d ) are compared with the bimodal
distribution (1) (solic. lines, subscript & } for different thin layers normal to the z-
axis. All distribution functions are normalized to unity. As is seen from Fig.2, the
evolution of the v;- distribution begins with the generation of high energy tails.
Then the change is extended into the region of smaller v;. In the vicinity of
the point v, =0 the distribution remains unchanged until a new equilibrium state
is reached. The bimodal approximation describes the evolution of the function
G(z,v;) with a good accuracy.

The transformation of the v,-distribution begins in a similar way: first, the
high energy tail is formed. Then the new (downstream) distribution is formed
~due to the particle flux in the velocity space. It is seen from the results of
simulation that the width of the distribution function F(z,v,) within the shock
front is greater than its width in the equilibrium downstream flow. The function
Fy(z,v,) calculated using the bimodal approximation (1) differs little from the
function Fy(z,v,) obtained from the MD simulation. Calculations show, however,
that the difference decreases with the Mach number decreasing. This fact is
inconsistent with popular point of view that the bimodal distribution affords
better approximation at higher Mach numbers when the shock wave thickness is
small. At Mach numbers M close to unity, the functions fi(v) and fa(v) are
close to each other, and Eq.(l1) has correct limit as M — 1. Fig.1-3 clarify the
origin of the “temperature maximum” observed in some of the previous studies of
shock wave structure, and show that the bimodal distribution (1) is close to the
real distribution function in shock waves.

In Fig.4 the evolution of the pair distribution function N(r), defined similarly
to [16] (here r is the vector in the zy-plane) across the shock front is shown.
In the upstream flow N(r) reveals the maximum whose position corresponds to
the minimum of the interparticle potential 7 =2'/¢ &~ 1.12. This maximum is less
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Fig.3. Variation of the velocity distribution Fig.4. The pair distribution function in the
functions: Fy(z,v:) and Fy(z,v;) in the shock upstream (1) and downstream (2) flows, and
front at M =8.19 in the center of shock layer (dots) at M =8.19

pronounced (but its position does not change) in the downstream flow, where the
temperature is much greater than the potential minimum depth, £. Correspondingly,
the average potential energy per particle is about —0.2 in the upstream region
and +40.007 in the downstream region.

Within the shock wave front, the velocity distribution function is not spherically
symmetric. The pressure in this case is a symmetric tensor, rather than a scalar.
The definition of this tensor in general nonequilibrium case is given in [20]. If the
shock layer is planar (and normal to the z-axis), the pressure has diagonal form:
Py =Py, =P;, P,,=P,, where P, and P, are the tangential and normal pressure
components. The difference between the pressure components at the surface of a
macroscopic body gives rise to the surface tension. Similar effect takes place in
a shock wave [21]. The surface tension coefficient can be calculated using the
formalism [20, 22] as

y= /(Pn — P,)dz.

Calculating the pressure components from MD simulation data yields the surface
tension coefficient v = 17.38 = 250 dynes/cm at M =8.19 and v = 1.232 = 17.7
dyne/cm at M =2.65. These results are in qualitative agreement with the estimates
[21]. Note that in the case of gases the surface tension is connected with gas
kinetic pressure, and the coefficient v is roughly proportional to (MZ - 1).
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