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We propose a model describing destruction of metals under ultrashort intense
laser pulses when heated electrons affect the lattice through the direct electron-
phonon interaction. The metal consists of hot electrons and cool lattice. The lattice
deformation is estimated immediately after the laser pulse up to time of electron
temperature relaxation. The hot electrons are described with help of Boltzmann's
equation and the equation of thermoconductivity. We use equation of motion for
lattice displacements with the electron force included. The estimate of lattice
deformation shows that the ablation regime can be achieved.

PACS: 62.20.Fe, 63.20.-e, 79.20.Ds

1. It was pointed out [1], the unltrashort UV laser pulse ~ 107135 results in
nonequilibrium electron gas near a metal surface. Such hot electrons were observed
in the experiments on IR reflection [2-35], giant electron emission [6-8] and light
radiation [9-11] from metals induced by subpicosecond laser irradiation. Because
the electron specific heat is much less than the lattice one, these pulses build up
the electron temperature 7. considerably higher than the lattice temperature T;.
The characteristic time of electron gas cooling 7, ~ 107125 is determined by the
electron-phonon coupling constant [12]. The process of temperature relaxation and
the subsequent ablation regime have been studied recently [13].

We focus here on the other processes which can take place at times much
shorter than 7, when hot electrons affect directly the lattice expansion through
the electron-phonon interaction. This novel effect is caused by the electron gas
contribution (depending on T.) into the elastic constants (sound velocity and
optical phonon gap) and owing to the effective electron force proportional to VT,.
This interaction induces the lattice deformation.

The experimental results [14] vizualized with the aim of time-resolved X-ray
diffraction synchronized with laser pumping can be explained on the framework
of the model described below. It was discovered that the laser pumping induces
nonstationary increase in lattice parameters of Au(111) and Pt(111) single crystals.
The measurement of the shift and intensity variation of Bragg peaks, from the
one hand, and observation of the Debye-Waller factor, from the other hand, allows
to separate the effects of lattice deformation and heating. It was shown that the
initial elastic deformation turns into the subsequent plastic one. Here we propose
the theory of lattice deformation due to direct electron-phonon interaction.

2. We describe the overheated electron gas in terms of the Boltzmann equation.
When the lattice temperature 7; is higher than the Debye temperature, the mean
free of electrons is proportional to 7 ~ T, ! ~ 107145 << 7,. Thus the electron gas
is nearly in equilibrium at temperature 7T, >> T;. For our problem, the system
obeys the equation of thermoconductivity
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o(T.) 57 + Va=Q ~ o(T. - T, (1
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and the equation for the lattice displacement wu;
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where ¢(T.) is the electron heat capacity, p is the metal density, Aikim is the
tensor of elastic constants, @ is the density of the laser energy absorbed by a
metal

Q(z,t) =I(t)(1 — R)rke™"*,
R being reflection coefficient. Function I(t) describes the pulse shape. The last
term in Eq. (1) represents the energy flow from nearly equilibrium hot electrons
into the lattice [12]. Constant « is determined by the electron-lattice relaxation
- 7e ~ afc(Te). The electron heat flow q and the driving force Gi(T.) applied to
the lattice [15] are defined by the electronic partition function fp(r,t)
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where Ay is the deformation potential. The effects of the electron interaction (3)
on accoustic phonon spectra (as well as on optical phonons) have been studied in
detail in our recent paper [16]. The real part of the force (3) (for the first time
the corresponding term for optical phonon was written in the paper [16]) leads
to the renormalization of lattice parameters - sound velocity for accoustic phonons
and optical phonon frequency. The imaginary part results in phonon attenuation
due to the electron-phonon interaction. There are two regimes of phonon damping.
The first, ballistic one, takes place when electrons are nearly collisionless and the
attenuation comes from the electrons moving coherently with the phonon. The
hydrodynamic regime is realized when the mean free length of electrons becomes
smaller than the phonon wavelength. As a result the attenuation depends strongly
on the electron collision rate.
The electronic distribution function in the linearized form

0
Fol2,t) = Fo(T2) + Xpl2:1) 5 4)
obeys the Boltzmann equation
Ixp Oxp = Xp _ 8u.k 5,, —p [ 0T, aT,
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We write the collision integral in 7T-approximation because the electron temperature
is much higher than the Debye temperature and electron-phonon collisions have to
be elastic. The value averaged over the Fermi surface, X, represents the ’in-term’
in collision integral. Thorough consideration shows that this term is unimportant
when we are interested in thermoconductivity coefficient but it renormalizes the
electron-phonon deformation potential: Az — Aix — Aik, (see [17]).

We assume in the following that T, << ep. This let us obtain the results.in
analytical form. For simplicity we supposed that the metal occupies the half-space
2z >0, and the boundary conditions to the written above equations have the form

T, -0, I‘)u,

glzzO |z 0=0. (6)
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The fitst condition means that the heat flow through the surface vanishes while
the second one means the absence of normal stress component.

3. For the times shorter than the electron-lattice relaxation time 7., the lattice
temperature can be considered as equal to the initial temperature Ty, and the
last term in Eq. (1) can be omitted. To solve Egs. (1) - (5) with boundary
conditions (6) we use the even continuation T.(z,t) and the odd continuation for
u,(z,t) into the half-space z < 0.

Let us consider here the solution of Eqs. (1)-(5) for the most interesting
case when the times after laser pulse are much longer than the mean free time
of electrons (¢t >> 7) and mean free length is much less than the skin depth
(k1 << 1). Note that electric field of the laser was omitted in Eq. (5) because it
is essential only for the times of order of mean free time.

The heat flow in Eq. (1) is calculated with Boltzmann’s equation (5). The
thermoconductivity coefficient as well as the specific heat becomes proportional to
the electron temperatire T,. The equation (1) turns to be linear in T2 and its
solution can be obtaine easily with the help of Green function.

The electron temperature reads

T2(z,t) = /dt’/d’ﬁ\/l_tll_%)__ <—4—((Z?}‘t’—))%) (7)

where the diffusion coefficient D =702 and the temperature coefficient of electronic
specific heat = c¢(T.)/T. are introduced. The function (7) is even in z because
Q(z,t) was continued into the z < 0 half-space under even manner. Therefore this
solution satisfies the boundary condition (6). For the surface z=0 Eq. (7) gives

¢
T2(0,t) = T2 + ;45 /dt'Q(O,t — t')e~ D' erfc (v rcth') . (8)
J .

Now let us consider the equation for lattice displacements (2) with the force (3).
The main contribution to the force G; comes from the local equilibrium partition
function - the first term in (4), if the condition t >> 7 is valid. Substituting the
expression (4) into Eq. (3) and expanding the integral over powers of T./ep up
to the second order, we obtain the force

oT?
Gi=A,; £,
¥ Do 9)
where 1 8 S
Ay = ma / TAik(P) ~ gB,

and g ~ A/ep is the dimensionless electron-phonon coupling constant.

To solve the equation of lattice motions (2) with the calculated force (9)
from hot electrons, we use the continuation described in the beginning of this
section. The function u, obtains a singularity at z=0 after the continuation. The
singularity contributes dé(z)/dz-term into the second derivative d?u,/dz?. One can
use the Fourier transform with respect to spatial coordinate over entire space

— p(w? = % k*)u, (k,w) = ikA,, T2 (k,w) — ips*kC(w), (10)
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where s=),,,./p is the longitudinal sound velocity in z-direction. The last term
C(w) has to be determined from the boundary condition (6).
Deformation du,/dz given by the solution of Eq. (2) can be written as

. _du_l - iA“;K.(l — R) / dwdk sz(k)I(w) (eikz _ eiwlzl/a) e—iut (11)
dz o0 (27)? (w + ik2D){w? — 5%k2?) !

where U(k)=2x/(k* + «?) is the Fourier transform respect to z of laser radiation

in metal, I{(w) is the Fourier transform of the pulse shape I(t). The second term

in the brackets corresponds to the general solution of the uniform equation (2)

and represents the effect of the surface.

The integrand in (11) contains the poles associated with the diffuson and
sound-wave excitations. Sound singularities must be bypassed with insertion of the
infinitesimal imaginary term in w.

4. The electron temperature (7) immediately after the pulse takes its maximum
on the surface

Ito(l — R)
T2 22 7
mazx ﬂ

This result has a simple explanation. For short pulses k+/Dty << 1 time de-
pendence of temperature corresponds to the local laser intensity in the point of
observation. In the opposite case /Dty >> 1 the distribution of temperature is
determined mainly by the diffusion process.

The lattice deformation (11) vanishes at the surface z =0 according to the
boundary condition (6). For z ¥ 0 the second term in (11) represents the
deformation wave propagating from the surface into the bulk of a metal. It gives
nonzero contribution only for sufficiently small depths z < st ~ 10~7cm. We see
that the maximum deformation takes place at z ~ 10~7 cm << x~1. It is convenient
to perform the integral (1l) over w substituting the Fourier transform I(w). We
derive the following estimate for the maximum value of lattice deformation

t o]
Loek(l — dk —isk(t—t') —k*D(t~t')
du,  Asr(l - R) / 1) [ Uk [ S—s - C
dz spB 2 s(s +ikD)  k2D? + g2

0

min (lc, (Dto)'l/z) .

— 00

~ A, T2, k*2/p. (12)

We consider times of the order of characteristic time of electron diffusion ¢ <
(,k2D)"! ~ 107125 << (sk)~! but less than the period of sound wave with

vavelength ~ k=1, Using the estimate A/p ~ gs?/e%, we get

du, 8T maz
~ g | 2Zmaz_
dz kTviep

) ~ g(1 = R)Ito(s/rv%er)?/KB. (13)

Here we put s/v~ 1072 k~ 10°cm™!. and we arrive to the numerical estimate
du,/dz ~ 1072¢%(T. [ep)?.

This result agrees with the experiment [14] where a deformation as much as
~ 1073 had been observed. Although our estimate was obtained for T. << ep, it is
still correct qualitatively up to T, ~ ep. Therefore, the ultrashort intense laser pulse
can result in the destruction and ablation of metals, while the electron component
is heated only and the lattice stays cool at considerably low temperature.
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In conclusion we would like to emphasize two points. First, as it follows from
Eq. (9), the driving force for the lattice expansion is proportional to T.97T./dz.
Because of high absorption coefficient of metals in UV region (x ~ 10°cm™!) the
temperature gradient reaches ~ 10° K/cm. Note the extremely high values of this
parameter (that is the pecularity of metals) leads to the nomequilibrium expansion
of lattice. Second, the subpicosecond elastic deformation of lattice ‘of the order
103 — 10-2 corresponding to the internal pressure 10 — 100 GPa, can provide the
effective mechanism for the subsequent laser fracture of metals.
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