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It is found that in a wide range of temperatures and magnetic fields even a
small concentration of magnetic impurities in a semple leads to a T~' tempersture
dependence of the nuclear heat capacity. This effect is related to a nuclear-spin
polarization by the magnetic impurities. The parameter that controls the theory
turns. out not to be the impurity concentration n;ny; but instead the quantity
Nimphte/ttn, where pe and un are the magnetic moments of an electron and a
nucleus, respectively. The ratio of pe and py is of order of 10%.

PACS: 72.15.Eb

During the last years nuclear spin ordering has been observed in a considerable
number of solids. For a review see Ref. [l1]. This is due to an impressive
progress in cooling nuclear spin systems and temperatures as low as T ~ 107K
have been attained. The ordering temperatures of the nuclear spin systems are
as small as 58nK for Cu and 0.56nK for Ag [2,3]. The Curie temperature
for Auln; is 35uK. In this system an interplay between nuclear magnetism and
superconductivity has been observed [4].

At such low temperatures all degrees of freedom of the solid are frozen with
the exception of the nuclear spins. The temperature dependence of the resistivity
is therefore due to conduction electron-nuclear spin interactions [5]. It Ref. [6]
it was demonstrated that the nuclear-spin susceptibility depends on the impurity
concentration and that the heat capacity in low external magnetic fields does not
obey a Schottky law. Instead, it is more close to a 1/T behaviour. This seems
to hold for a number of compounds [6].

The aim of this paper is to show that magnetic impurities can give the main
contribution to the heat capacity at low temperatures even if their concentration
is very low. In the following we want to give a simple physical argument to
justify that statement before we present a more quantitative theory.

Consider for simplicity a system in which the magnetic interaction between
nuclear spins as well as between an impurity and the nuclear spins is of the
dipolar form

v o = B par? = 3(par)(par)
1,2 = 5 .

(1)

Here pt12=p12S19, 1,2 and S;» are the magnetic moment and spin operators
of two particles 1,2 separated by a distance r. The temperature of the nuclear-
spin ordering is accordingly of order T., ~ u2/a® where a is the distance between
neighbouring nuclei. Note that the density of sites, i.e., nuclei, is n, ~a=3.
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The crucial point is that the interaction between the impurity spin and a
nuclear spin is much larger than the one between nuclear spins since the magnetic
moment fi;mp is much larger than the ome of the nuclei pn, i.e., pimp/pn =~ 108
Therefore, around each impurity there is a volume of size a®u;imp/pn in which the
impurity-nuclei interaction exceeds the one among the nuclei. Consequently, if the
impurity concentration nmp, exceeds pn/pimp the different regions with dominating
impurity-nuclei interaction overlap and influence each other. We shall consider here
the clean limit, i.e., concentrations cimp < fn/Himp. In that case it suffices to
consider a single impurity. The calculated contribution to the heat capacity has
then to be multiplied merely by nimp. Furthermore, we shall assume that the
impurity spin is kept fixed by an applied magnetic field Hy, ie., pimpHo > T,
whete 7T, denotes the temperature of the electron system. For T, ~ 10~*K
this requires a magnetic field of order 1 Gauss. In Auln, [4] the electron-nuclei
interaction is sufficiently strong so that the nuclear temperature T' and the electron
temperature 7, coincide. The effective field H acting on a nucleus consists then
of the external field Hy and the field set up by the impurity, i.e.,

H=H,+H, (2)
, 2 _,,.
Hy(r,) = SWimpt)e/ T primp. 3)

Here r =r, —Iimp is the distance between nucleus and impurity. The interaction
Hamiltonian is Hins = —(pnH). The partition function Z, of a nuclear spin is

_sinh(x(25 + 1)) _ pnH(rn)
Bt 0 X" o “
where S is the spin of the nucleus.

The specific heat contribution follows from C, = —T(8%F,/dT?) where F, =
=-~TInZ,. Here we have set Boltzmann’s constant kg =1. This gives

1 (25 + 1)

Cn =X iy~ SRS + 1)) ¥

The average value of the specific heat C, is a sum over r, multiplied by the
impurity concentration. Furthermore, it is advantageous to subtract the specific
heat C,(;O) of the pure material

Cn = C = tump ) (Ca(H(ra)) — CL(Ho)) (6)

En

When C¥ is expanded in powers of u,Ho/T we obtain to leading order in

the external field 2
unHo\2 S(S +1
(‘10 =n ( 0) ( ) (7)

Where n, is the concentration of nuclei.
In order that a high-temperature expansion of this type does also hold for the
nuclei close to the impurity the condition T > pimpin/a® must be fulfilled. The
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square of the effective field is
3(Nimpr)2 + pizmprz
r8

B = H} + + 2 (B3 Ho) timpr) — (imgHor?)  (8)

From Egs. (6)-(8) the following expression is obtained for the specific heat in
the high-temperature regime,

Cpn—-CO=n

ul S(S+1) 3([-"impr)2 + l‘?mprz
2 : 9
x

VP 2 3 r8

The sum converges very rapidly. For fields less than

i
Hgo = :;p (nimp)l/z (10)
the main contribution to the specific heat comes from nuclei close to the magnetic
impurity.
Consider next the range in T and Hg defined by the inequalities

pHo €T (11)
A 2
“-LC‘:;"E>>T>>TC,,=‘;—’;. (12)

In that region the main contribution to the specific heat comes from nuclei at
large distance from the impurity, i.e., 7> a. For them one needs not accounting
for the spin-spin interaction between nuclei (see Eq. (11)) and one can also
convert the summation over r, into an integral of the form n, fd®r.... From Eq.
{6) we obtain in this case

drn, HimpHn N 1
T S T

By comparing Eqs. (7) and (13) one notices that for fields

én - 01(1,0) = Nimyp

In(2 + 3/2)) (13)

Hy < (Nimanimp)l/z (14)

Hn
the main contribution to the specific heat of the nuclear spin system comes from
the interaction with magnetic impurities. The temperature dependence of this
contribution is 7! rather then T2. A dependence of this kind was indeed
observed in Ref. [6] for Auln,. We suggest that it is due to the impurity effect
discussed here. However, for a quantitative comparison one must take into account
that the main contribution to the specific heat comes from the In nuclei which
have spin S = 9/2. The electric-field gradient due to the impurity leads to a
quadrupolar splitting of the spin levels. Being proportional to r~2 the electric-field
gradient leads also to a T~! temperature dependence of the specific heat. For
metals with nuclear spin S = 1/2 like Ag [2] a quadrupolar splitting does, of

course, not occur.

We want to point out that a T~! contribution results also from the nuclear

spin—-impurity spin RKKY-type of interaction

_ Ky Bimyp
7.3

sin(z)

Vg = kf(2ppr); f(z) =cos(z) — — (15)
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Here % is a parameter proportional to the spin-spin Fermi contact interaction
[7]. This interaction is proportional to the charge of the nucleus [8]. For a light
nucleus « < 1, while for a heavy one x> 1. Therefore in a metal the spin-spin
interactions between the nucleus of an impurity and the ones of the host contain
two contributions given by Eqgs. (1), (15). As pointed out before, we shall consider
here only the universal dipole-dipole interaction (1), which is the same in metals
and insulators.

Next we consider the case of a strong magnetic field u, Ho > T. In this regime
the heat capacity is exponentially small (see Eq. (5)). The main contribution to
it originates from nuclei for which the effective field H(r) is of order T'/u,. From
Eq. (8) we find

(Hor)
H()T )

a2 = (Hime _ oy 4 Himo (limy ) (16)

One notices that H(r) is zero along a circle of radius ro = (pimp/Ho)'/® around
the impurity in a plane perpendicular to Hy. The nuclei contributing most to the
specific heat are within a torus with its axis given by the circle of radius rq. If
ér =7 —ro, 2= (Hor)/Hor then (2?4 (6r/r0)?)'/* denotes the ”distance” from this
axis and we find for the effective field

H? = 9HZ(2% + (67/r0)?). (17

With the help of Egs. (5), (17) we obtain

- 1672 T2 i o in i I
_(0) = HimpNinNimp _
where o g 43 3
Tz
e[ s 2 (19)

and {(z) is Riemann’s zeta function.
Replacing the sum over r, by an integral n, [d®r is justified only if many
nuclei are placed within a radius ér/ro ~ z ~ T/un, Ho of the torus. This restriction
leads to the requirement
Tzl‘imp“nnn
(l‘nHO)3

in order for Eq. (18) to hold. Together with the starting assumption ( p,Ho > T)
this implies the condition

> 1 (20)

T € pnHy < (TZl‘l'impl*"n'n'n)1/3 (21)

on the applied field Hy.

Next we deal with the case that the impurity spins are frozen in a glassy
state. Then Eqs. (5), (6) must be averaged over all directions of the external
field Hy. As stated before, the main contribution to the nuclear heat capacity
comes from nuclei in an effective field H o~ T/u,. As a result we obtain

32773 impnin
3Hgud

. 1
Go— 0 = () 4 a2 + VA1 -

N e @)
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where

* drzt nt
= _/o sinh?z 30 (23)

The restriction (21) for Hp is changed accordingly into
T ”HHO < (Tsf“imp/“'nnn)l/‘*- (24)

The required range of strong magnetic fields has not yet been studied experi-
mentally, although in Ref. (6] the region u, Ho < T was investigated. For metals in
the clean limit the nuclear-spin contribution to the heat capacity has a maximum
near pnHo ~ T, the position of which is only weakly dependent on the magnetic
impurity concentration 7nimp, provided nimppimp/pn € nn. We expect that in the
strong-field regime u,Ho > T the heat capacity has a power-law behaviour given
by Eqs. (18) and (22). For pure samples an exponential temperature dependence
is obtained (see Eq. (3)).

In summary, we have shown that in a wide region of temperature and magnetic
fields the main contribution to the nuclear specific heat results from their interaction
with small amounts of magnetic impurities which are present in most of the
systems.
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