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We study the scaling properties of the renormalization group (RG) flows in the two-
dimensional random Potts model assuming general type of the replica symmetry breaking
(RSB) in the renormalized coupling matrix. It is shown that in the asymptotic regime the
RG flows approach the non-trivial RSB fixed point algebraically slowly which reflects the
fact that such type of t 1e fixed point is marginally stable. As a consequence, the crossover
spatial scale correspor.ding to the critical regime described by this fixed point turns out
to be exponentially large. )
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After several years of extensive studies of the critical properties of the ferromagnetic
random Potts model there still remains the controversy due to the fact that in the renor-
malization group (RG) approach one finds two types of the attracting fixed points, the
one which is replica symmetric [1,2], and the other one in which the replica symmetry is
broken([3]. In this situation, which one of the two fixed points is actually reached depends
on the starting conditions for the coupling matrix in the RG equations. Recent numerical
studies seems to favour the critical properties corresponding to the RSB fixed point [4].
However, since the replica symmetry breaking (RSB) fixed point is only marginally stable
(the spectrum of the corresponding eigenvalues starts from zero), the crossover spatial
scale corresponding to the critical regime of this fixed point may turn out to be much
larger than presently accessible sizes in numerical tests. To obtain the prediction for the
value of the RSB crossover scale one has to derive the asymptotic behaviour of the RG
flows near the RSB fixed point, and it is this problem which we address in the present
Letter.

The random g-state Potts model is described by the following lattice Hamiltonian:

Hlo)=- ) J;V(0i,0;). (1)

<i,j>

Here the spins {o;} are taking ¢ values; the summation goes over the nearest neighbour
sites; V(0,0') = 1 — 8, is the spin-spin interaction potential; {J;;} are random ferro-
magnetic coupling constants with independent distributions characterized by the narrow
width go around a mean value Jp. Since the randomness is assumed to be weak (go < Jo),
in the critical region this system can be analised in terms of the renormalization group
approach based on the conformal field theory of the unperturbed model [1]. Following
the standard procedure of averaging with replicas, it can be shown (see, e.g.[2]) that in
the critical point the system under consideration is described by the following continuum
limit replica Hamiltonian:
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where Hj is the Hamiltonian of the pure system, and the second term represents the cou-
plings of the energy operators e, of different replicas. Strictly speaking, after performing
replica averaging one obtains the replica symmetric coupling matrix ges = g (where g
is proportional to gp). However, according to a qualitative physical arguments [5] one
can also consider a more general situation when the replica symmetry is spontaneously
broken in the coupling matrix g, such that it has the Parisi block-like structure [6].
The renormalization group for the model (2) (with the replica symmetric g,5) has
been derived in the two-loop approximation in [1], and using the technique developed in
[2] these RG equations can be easily generalized for an arbitrary structure of the coupling
matrix gg [3]:

n n
—d"gab = TGab + Z GacGed + ggb — Gab Z 9acYea (3)
dé c=1 c=1
(it is assumed that g,, = 0). Here £ is the usual RG log-scale parameter, and the small
parameter of the theory 7 = —3e¢ is related to the deviation € of the central charge of the
conformal theory for the Potts model from the one of the Ising model. In particular, for
the 3-component Potts model € = —2/15. In fact, the renormalization group for the Potts
model is derived in terms of the e-expansion technique.

The critical behaviour defined by the replica symmetric fixed point of Eq.(3) has been
analyzed in all detail in [1,2,4]. Here we will concentrate on the RSB case. According
to the standard technique developed in the mean-field theory of spin-glasses [6], in the
limit of the continuous RSB, the matrix g, is parametrized in terms of the continuous
(and monotonous) function g{z) defined in the interval 0 < z < 1. In this case, from

the general Eq.(3) one can easily derive the following RG equation for the renormalized
function g(z; &) [3]:

%g(w; €) = 79(z; €) —29(z; £)3(&) - /O ) dylg(z; &) — g(y; O +6°(x; &) + 9(x; )9%(€), (4)

where g(¢§) = fol dzg(z;€) and g2(¢) = fol dzg®(z;€). Note, that the structure of the
corresponding fixed-point equation, dif g(z; &) = 0 coincides (with the exception of the
last term in the r.h.s of Eq.(4)) with the corresponding saddle-point equation for the
Parisi order parameter function in the mean-field theory of spin-glasses near the phase
transition point [6]. The fixed-point solution of the Eq.(4) is:

ir at0<z<m,

9(2) = { ;1 atz; <z <1, 5)
where z; = 3¢, and the value of g, is defined by the equation 2¢;(1 — g;)? = 7, such that
in the linear order in small 7, g; ~ 7. The critical properties defined by this fixed point
are described in detail in [2,3].

Here we would like to study the problem of crossover to the critical regime defined by
the RSB fixed point (5). Usually, if one deals with the renormalization group in terms
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of a finite number of renormalized parameters, this problem is not so difficult. In this
case, if the fixed point is stable, the RG trajectories are approaching the fixed point
exponentially fast, and therefore the corresponding spatial crossover scale depends on the
starting parameters according to some algebraic law (with the crossover exponent defined
by the smallest in absolute value eigenvalue of the linearized RG equations in the vicinity -
of the fixed point).

In the present case the RG Eq. (4) describes the evolution of the function, which
formally means that we are dealing with an infinite number of renormalized parameters,
and correspondingly one finds the whole spectrum (infinite number) of the eigenvalues of
the linearized RG equations. Moreover, it is well known from the mean field theory of
spin-glasses that this spectrum starts from the A = 0, and therefore it is not so easy to
tell right away what must be the typical asymptotic decay of the perturbations near the
fixed point. Although the problem of stability of the saddle-point of the type given by
Eq.(5) for the corresponding mean-field SG free energy functional is already studied in all
detail, and the spectrum of all the eigenvalues is well known [7], in the present problem
we are facing somewhat different situation.

First, in the terminology of the stability analysis of the Parisi-type structures, the RG
Eq. (4) actually represents not all possible (in the mean-field spin-glasses) deviations,
but only the so-called “longitudinal” modes. This makes life much easier because, as
it will be shown below (see-also [7]), it makes the spectrum of the eigenvalues to be
discrete (although still accumulating towards zero), unlike the complete spectrum in the
corresponding SG problem, which is it continuous.

Second, unlike spin-glasses, where the “dynamical” behaviour of the order parameter
defined by Eq.(4) makes no sense (the real microscopic spin dynamics can not be reduced
to such a simple dynamical equation for the replica order parameter), here it is the
asymptotic “dynamical” evolution of the Parisi function in the vicinity of the fixed point
which is of the main interest. ‘

Third, in the present problem, described by Eq.(4), we have the additional term
g(z)?, which is not present in the corresponding saddle-point equation in spin-glasses.
This term appears to be irrelevant for the structure of the fixed-point solution, but it
turns out to be quite relevant for the asymptotic behaviour of the deviations near the
fixed point.

The linear analysis of the perturbations around the fixed point, Eq.(5), is rather simple.
Substituting g(z; £) = g.(z) + ¢(z; ) into Eq.(4), in the linear order in the small deviation
$(z; €) we get:

d 1 1
@6 =2 /0 dyK (2, )$(y; £) + 20.(2) /o dyg. (1) $(w; ©), (6)
where
_ [ —9.(y) forz>y
K(z,y) = { —g.(z) forz <y. )

It can be easily checked aposteriori that since g, ~ 7, in the leading order in 7 < 1 the
last term in Eq.(6) is irrelevant, so that it will be dropped in the further analysis.

Since K (z,y) = K (y, z), the operator K is hermitian and it can be diagonalized. The
corresponding equation for the eigenfunctions is:
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K¢t = A, ©)
Taking derivative over z two times from the above equation we obtain:
& g.(z)
Z W (g) = 2222 4(n)
dmg ¢ (x) An ¢ (Z'), (9)

where, according to Eq.(5), g.(z) = 1/3 = const for 0 < z < =z, and g,(z) = 0 for
z; < z < 1. Thus, the solution for the eigenfunction is:

) () — | SI0(EnZ) for0<z <z
¢ (z) = { ¢1 = sin(k,z;) forz; <z <1, (10)
where
1
K=o (1)

Substituting these eigenfunctions in the original Eq. (8) we obtain the equation for the
eigenvalues: kntg(knz;) = (1 — 21)~!. Since z; ~ 7 < 1 the solution of this equation
gives the following spectrum of the eigenvalues:

_ 372
"7 T 4n2p?’

We see that the eigenvalues are accumulating towards zero. Since the characteristic
decay scale of the n-th order mode is of the order of &, ~ A;! ~ n2?/7%, the more
higher-order modes contains the starting function g(z;£ = 0) the slower it will decay.
In the extreme case, if the starting function would be composed of all the modes with
equal weight, it would not decay towards the fixed point at all. Thus, if the analysis of
the stability of the fixed point would have to be restricted within the linear order, the
result would be not quite conclusive. Fortunately, the actual situation appears to be more
complicated, and it turns out that the linear analysis is not enough.

The problem is that besides the set of the eigenfunctions described above, there also
exists the whole (infinite) spectrum of the so-called “zero-mode” functions which have the
eigenvalue A9 = 0. Coming back to the original linear equation (6) one can easily check
that the zero-mode is an arbitrary function ¢o(x) such that ¢o{z) = 0 in the interval
0<z<z and [ :l dzgo(z) = 0. Apparently, a zero-mode function is orthogonal to all
the “non-zero-mode” functions, Eq.(10). Since in the linear order all the deviations which
contain the zero-mode function do not decay, the analysis in the second order is needed.

Let us explicitly separate the two types of modes: ¢(z; &) = ¢ (z; €) + do(z; £), where
the function ¢, (z; &) is assumed to be composed of the non-zero-mode functions (10) only.
Simple calculation gives the following second-order equations for the functions ¢, (z; &)

and ¢o(z; €):

(12)

di’éqsl (z:6) = 2 /0 dyK (2, 4)1 (v; €) — 26 (2 )1 (€) /0 "ty (3:6) - b1 (g O+

+9.(z) B3 (€) (13)
in the interval 0 < z < z;; and
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adz¢o(-’b'; & = ~240(z: 016 - [ " dylbo(:€) ~ doly; £ (14)

in the interval z; < £ < 1. In Eq.(13) all the terms like gugudh1, gu®2, G101, gud?
which are small in T has been omitted; and in Eq.(14) we have introduced the notation:
$1 (&) = ¢1(z = z1;€). Below we will show that due to mutual interference of the zero- and
non-zero-modes (via the last term in Eq.(13) and the first term in Eq.(14)) the asymptotic
behaviour of the solutions of the above two equations appears to be sufficiently universal.

The solution of the Eq.(14) can be found exactly for an arbitrary given function ¢ (£)
and for an arbitrary starting function ¢o(z; ¢ = 0):

bo(zi8) = [ "y 1()¢o(;0) -~ 30, (15)
o [1+h(e) [2, da(z - 21)6(20)]
where
3
7(€) = exp{-2 / d¢ér(0)) (16)
0
and
3

h(e) = /0 dty(s). (17)

Here the function ¢(¢) is fixed by the condition f :1 dxdo(z;£) = 0, and ¢p(x;0) is the
derivative over z of a given starting function ¢o(z; ¢ = 0).

The solution, Eq.(15), makes possible to derive the asymptotic (at £ = oo) behaviour
of the functions ¢, and ¢y without explicit solutions of Eq.(13). Let us consider three
different types of possible asymptotic decays of the function ¢;.

1. Let us assume first that the decay of the function ¢; is sufficiently fast: ¢; ~ £~*
with & > 1 {(or ¢; decays exponentially fast, as it should follow from the linear analysis
for the function containing finite number of the eigenfunctions, Eq.(10)). Then, from
Eqs.(16) and (17) one finds: y(£ — oo) — const and A(€ — co) — (const)é. In this case
it is easy to see from the solution (15) that the function ¢p(z;€ — 00) has the step-like
structure: in the narrow interval z; < = < z; + A(£), where A(€) ~ £71/2, its absolute
value is ¢*) ~ £~1/2) whereas in the rest of the interval, z; + A(£) < = < 1 its value
is much smaller: ¢(_*f) ~ €71, Therefore, for-the asymptotic behaviour of the last term
in eq.(13) we get: @ ~ (¢*))2A + (¢(**))? ~ £73/2. Since the linear and the quadratic
terms in Eq.(13) decay correspondingly as £~(®*1) and £~2%, where both (o + 1) and 2o
are greater that 3/2, the last term, containing ¢g ~ £~3/2, must dominate at £ — oo.
Thus, the asymptotics ¢; ~ £~% with a > 1 can not take place.

2. Let us assume now that the asymptotic decay of the function ¢, is slow: ¢; ~
€ with @ < 1. In this case from Eqs.(16) and (17) one finds: 4(§ — o0) ~
~ exp{—(const)¢(!~*} and A(¢ - oo) — (const). Therefore, according to Eq.(15),
the function ¢y must be exponentially small: ¢y ~ exp{—(const)¢(1~*)}, and the last
term in Eq.(13) can be neglected with respect to the other terms which depend on the
function ¢; only. In this case, however, if @ < 1, the second order terms, being of the
order of £~2*, must be dominating over the linear term, which is of the order of £-(+1),
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On the other hand, simple estimates show that the asymptotic solution of the Eq.(13)
with the second order terms only, decay as £~1, and it can not be £~ with a < 1. Thus,
the slow asymptotics ¢; ~ £~* with o > 1 can not take place either.

3. It can be easily checked that the only selfconsistent asymptotic decay of the function
¢y is: ¢ ~ A€, where A is some constant. Indeed, using again the general solution
(15) for the function ¢o, one can easily find that depending on the value of the constant
A there can exist three different regimes:

44 if A>

ofi

(N[

E—(3+2A)/2 if A<

(M

Coming back to Eq.(13) for the function ¢, one can easily check that the last term ZSE
can be neglected (and only in this case the asymptotics ¢ ~ £~} can appear) oaly in the
first two cases, e.i. for A > 1/2.

Thus, we conclude that in the considered RG approach with continuous RSB, for a
generic starting Parisi function g(z; £ = 0) the deviations of the renormalized function
g(z; €) from the fixed point g.(z), Eq.(5), decay as £~!. This slow asymptotic behaviour
is essentially different from the usual exponentially fast decay in the vicinity of a stable
fixed point in the RSB renormalization group. As the consequence, the crossover scale £,
which corresponds to the RSB fixed point (5) is defined by the condition &, ~ g7 ~ 771,
and therefore the corresponding spatial crossover scale must be exponentially large:

R, ~ exp{const/7}. (19)

It should be noted that the actual value of this crossover scale (which is quite impor-
tant for reliable interpretation of numerical tests) essentially depends on a non-universal
(const) which is defined by the structure of the starting Parisi function g(z; £ = 0). Since
the structure of this function remains quite nuclear, at present stage it is hardly possible
to derive more concrete prediction for the RSB crossover scale. Nevertheless, present
study demonstrates that in principle this scale may appear to be well beyond the sizes
accessible in the usual numerical simulations.
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