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It is proved that no wormholes can be formed in viable scalar-tensor models of dark energy admitting
its phantom-like (w < —1) behaviour in cosmology, even in the presence of electric or magnetic fields, if the
non-minimal coupling function f(®) is everywhere positive and the scalar field ® itself is not a ghost. Some
special static, spherically symmetric wormhole solutions may exist if f(®) is allowed to reach zero or to become
negative, so that the effective gravitational constant becomes negative in some region making the graviton a
ghost. If f remains non-negative, such solutions require severe fine tuning and a very peculiar kind of model.
If f <0 is allowed, it is argued (and confirmed by previous investigations) that such solutions are generically
unstable under non-static perturbations, the instability appearing right near transition surfaces to negative f.

PACS: 04.50.+h, 04.70.-s, 95.36.+x

1. Wormbholes are hypothetic objects described by
nonsingular solutions of gravitational field equations
with two large or infinite regions of space-time con-
nected by a throat (a tunnel). These two regions may
lie in the same universe or even in different universes.
The existence of stable static or stationary (traversable,
Lorentzian) wormholes can lead to remarkable astro-
physical effects as was recently emphasized in [1], as well
as to the possibility of realizing hyperspace jumps (‘null-
transportation’) or time machines [2]. That is why it is
so important to investigate if really existing matter can
produce and support such objects (it is well known that
vacuum Einstein equations do not admit static worm-
hole solutions).

It is not difficult to construct a static wormhole with-
out worrying about a matter source, as was done, e.g., by
Morris and Thorne [3]. Problems arise when trying to
find an explicit, internally self-consistent matter model
whose energy-momentum tensor (EMT) has a structure
required for wormhole existence and stability. Really,
it is known that such matter should be rather exotic in
the sense that its effective EMT should violate the weak
or/and null energy conditions

Tpvu“uu Z Oa (1)

where u* is a time-like or null 4-vector (u,u* > 0)Y.
Nevertheless, beginning with the 1970s [4, 5], a num-

DOur conventions are: the metric signature (+ — — —); the
curvature tensor R 5, = a”er — ..., Ruyy = R7ov, so that
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ber of static wormhole solutions supported by classical
scalar fields in the Einstein and scalar-tensor theories
of gravity have been constructed, see, e.g., [1, 2, 6] for
references to later work.

However, in all these solutions, to violate the above
energy conditions, such models always contain at least
one ghost?, i.e., a classical field with a negative kinetic
term, whose energy density may become arbitrarily neg-
ative for high frequency oscillations. From the quantum
field theory point of view, this property is bad: it leads
to the dramatic possibility of generating an unlimited
amount of positive energy in the form of equal amounts
of all known particles and antiparticles in laboratory,
accompanied by production of equal negative energy of
the ghost field in the form of particles and antiparticles
of that field, too (see [7] for the most recent considera-
tion). Note that this process requires gravitational cre-
ation of four particles from vacuum. That is why this
instability is not seen in the behaviour of linear quantum
perturbations in a classical background. Since nothing
of this kind is observed, it seems that nature somehow
avoids ghosts. Moreover, serious problems with ghosts
appear even at the classical level. First, different in-

the Ricci scalar R > 0 for de Sitter space-time and the matter-
dominated cosmological epoch; the system of units 87G = ¢ = 1.

2)The words “ghost” and “phantom” are often used on equal
footing in papers on gravitation and cosmology; however, for clar-
ity, we here distinguish between “phantom” dark energy as matter
with w < —1 (see below) and “ghosts” as fields with negative ki-
netic energy.
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stabilities arise at boundary surfaces dividing ghost and
normal field behaviour which generically transform these
surfaces into singular ones [8—11]. Second, as was re-
cently argued in [12], cosmological models with a ghost
field cannot explain the observed large-scale homogene-
ity and isotropy of the Universe. Thus, even though
there exist some counter-arguments in favour of ghost
fields (see, e.g., [13]), it is reasonable to try to avoid
such fields in modelling real or hypothetic phenomena.

The problem of phantom matter has got a new twist
after the recent discovery of the Universe late-time accel-
eration [14]. A new form of matter dubbed dark energy
(DE) is needed to support this acceleration if the Ein-
steinian form of gravitational field equations is assumed
(see [15, 16] for reviews). Moreover, it appeared that
though DE is well described by a cosmological constant
in the first approximation, some observational data, in
particular, the 'Gold’ supernova sample [17], slightly
favour a phantom behaviour of DE. Namely, the DE
equation of state w = ppr/ppr may be less than —1
for small redshifts z < 0.3 along with crossing of the
phantom divide w = —1 at larger z [18] (see [16] for a
list of further references). Other supernova samples like
the SNLS one [19] as well as the WMAP3 data [20] have
a cosmological constant as the best fit but still do not
exclude recent phantom DE behaviour, see [21].

Does it mean that if the transient phantom behaviour
of DE will be confirmed by future, more precise observa-
tional data, we have to introduce ghosts? No, not at all.
It is known that there do exist models without ghosts
admitting a phantom DE behaviour and even a super-
accelerated expansion of the present Universe, H > 0,
where H(t) is the Hubble parameter, H = dlna(t)/dt,
a(t) is the scale factor of a Friedmann-Robertson-Walker
cosmological model. The simplest of them is generic
scalar-tensor gravity generalizing the original Brans-
Dicke theory to the case of a non-zero scalar potential,
see Eq. (2) below. It was explicitly shown in [22, 12]
(see also [23]) that this DE model has sufficient free-
dom to describe all possible observational data on the
luminosity distance and the inhomogeneity growth fac-
tor including the possible present phantom behaviour
and smooth crossing of the phantom divide in the recent
past. More complicated models of phantom DE without
ghosts can exist, too, but they are less investigated.

Now, it becomes very important to investigate if this
physically reasonable and potentially existing kind of ex-
otic matter may support static and stable wormholes.
This problem is solved in this paper. Following and ex-
tending our previous considerations in [24, 25], we will
also add an electromagnetic field to the scalar-tensor
DE since this might be important both for stabilizing

a wormhole and for potential astrophysical applications
[1]. Thus, the Lagrangian density of a general scalar-
tensor theory (STT) in a Jordan-frame manifold Mj
with the metric g, is taken as

2L = f(®)R + h(3)g""'® , 8, — 2U(3) — F*'F,,,
(2)

where R is the Ricci scalar, F),, is the electromagnetic
field tensor, f, h and U are arbitrary functions. It is
assumed that a fermion matter Lagrangian is not cou-
pled to @, so that the Jordan frame is the physical one
(in particular, fermion masses are constant and atomic
clocks measure the proper time ¢ in it). We will still use
the Einstein frame, defined as a manifold Mg with the
metric

G = 1F(®)|gpr 3)

as a convenient tool for studying the properties of g,,,
employing results obtainable from the corresponding La-
grangian

2Lp = (sign )[R + (sign 7" ] —
— 2V (¢) — F*F,,, (4)

where bars mark quantities obtained from or with g,,,,
indices are raised and lowered with g, and the following
relations hold:

af\?> d
l(4>):=fh+g<d—é), déz

V(¢) =IfI2U(2).

1(2)]
@) 7 (5

The conditions of (quantum) stability and absence of
ghosts in the theory (2) are f(®) > 0 (the graviton is
not a ghost) and I(®) > 0 (the @ field is not a ghost).

2. Let us first assume that f(®) and [(¢) are smooth
and positive everywhere, including limiting points, or,
equivalently, that f and [ are bounded above and be-
low by some positive constants. It was shown in [26]
that a static wormhole throat (defined as a minimal 2-
surface in a 3-manifold) necessarily implies violation of
the null energy condition (NEC) by matter sources of the
Einstein equations. Meanwhile, the matter sources in
(1) always satisfy the NEC, hence wormholes (and even
wormbhole throats) cannot exist in Einstein’s frame. Fur-
ther, under the assumptions made, the conformal map-
ping g,, = f(®)gu always transfers a flat spatial in-
finity in one frame to a flat spatial infinity in another
(though, the corresponding Schwarzschild masses may
be different due to scalar field effects). If we suppose
that there is an asymptotically flat wormhole in Mj, then
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its each flat infinity has a counterpart in Mg, the whole
manifold is smooth, and we obtain a wormhole in Mg, in
contradiction to the above-said. Thus static and asymp-
totically flat wormholes are absent in the Jordan frame
as well.

This simple reasoning does not even require any spa-
tial symmetry assumption and means that any static
wormbholes are ruled out in the theory (2), if everywhere
f > 0 and [ > 0. Moreover, no positivity condition or
any other restriction on U(®) has been assumed (apart
from that needed for the existence of asymptotic flat-
ness).

It should be stressed that throats are not ruled out
in the Jordan frame since the energy conditions may be
violated locally, in full analogy with phantom DE be-
haviour in cosmology. Even though the NEC holds for
the fields ¢ and F,, in Mg, it can be violated for &
in Mj. Conformal mappings like (3) preserve the time-
like or null character of the vectors u* in (1), but Ty,
can change drastically. The EMT T,,[#] in Mg has its
usual form; however, if we write the gravitational field
equations in Mj in the Einstein form, the EMT 7, [®]
will contain second-order derivatives. Nevertheless, as
we see, wormholes as global entities cannot appear in
MJ -

This no-wormbhole statement can be further strength-
ened in several respects. First, the asymptotic flatness
requirement may be omitted: it is sufficient to require
the existence of two spatial infinities (which may be de-
fined in terms of sequences of closed 2-surfaces with
intinitely growing areas in the spatial sections of the
space-time manifold), so that spatial sections of both
Mg and Mj have the topology of a 3-cylinder R x S2.
(Our reasoning does not cover other possible wormhole
geometries: that of a “dumbbell”, where a throat con-
nects two large but finite universes and the 3-topology
is S3, and that of a “hanging drop”, where one of the
universes is finite and the 3-topology is R3.)

Second, the restriction to the static case is not nec-
essary. Indeed, Hochberg and Visser [27] extended their
previous result [26] on necessary NEC violation to dy-
namic wormbhole throats (which required a more general
definition of a throat in terms of anti-trapped surfaces).
In other words, even a dynamic throat cannot exist in
Mg without NEC violation. We therefore can assert that
even dynamic wormholes cannot exist in any Mj con-
nected with such Mg by well-behaved (though possibly
time-dependent) conformal factors f.

One reservation should be made here: the above rea-
soning employs the fact that a regular conformal map-
ping transfers a spatial infinity to a spatial infinity and
does not change the spatial topology. This is true un-
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der the strong conditions that we have imposed on f(®).
It is known, however, that spatial topology of the same
space-time manifold may be different in different refer-
ence frames (a well-known example is the appearance of
de Sitter space in closed and open FRW forms). Speak-
ing of dynamic wormholes, we should understand that
their properties can be drastically different in different
reference frames, but we consider conformal mappings
connecting, in a sense, similar reference frames in dif-
ferent manifolds.

Third, the no-wormhole statement is valid not only
for STT but for any metric theory of gravity (e.g.,
high-order theories with Lagrangians containing f(R)
or f(R,®)) whose physical manifold Mj is conformally
related to some other manifold Mg in which the Einstein
equations hold with a matter source respecting the NEC,
provided the conformal factor is everywhere smooth and
positive.

3. Returning to STT, let us slightly weaken our as-
sumptions and allow the function f(®) to become zero at
some & = $3. Note that the DE description in cosmol-
ogy does not require this, but let us conjecture that in
local configurations the scalar field & may reach values
not attainable in a cosmological setting. The situation
then becomes more complex since now the mapping (3)
is able to transfer a point or surface of finite area to
spatial infinity, i.e., a limiting surface of infinite area.

Let us restrict ourselves to static spherical symme-
try, considering the theory (1) in a space-time with the
metric
2

2 2 dp
dsy, = A(p)dt A0)
and assuming ¢ = ¢(p). The Maxwell fields compat-
ible with spherical symmetry are radial electric fields
(Fo1 F'° = ¢2/r*) and radial magnetic fields (Fa3 F2® =
q2,/r*) where the constants g. and g, are the electric
and magnetic charges, respectively.
The scalar field equation and three independent com-
binations of the Einstein equations read

—r2(p)(dB? + sin® 0 dp?) (6)

(Ar*¢')' = r?dV/de, (7)
(A'r?) = =202V + 24° /7% (8)

20" Jr = —¢'%; (9)

AR =2 A" =2 — 4¢® /7, (10)

where the prime denotes d/dp and ¢*> = ¢ +¢2,. Eq. (7)
follows from (8)—(10), which, given a potential V(¢),
form a determined set of equations for the unknowns
r(p), Alp), ¢(p).

Now, let us inquire whether or not an asymptotically
flat geometry of Mg described by a solution to Egs. (8)—
(10) can be conformally mapped according to Eq.(3)
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(where now f > 0 is simply some function of p) to a
twice asymptotically flat wormhole geometry in a man-
ifold My. One flat infinity in Mg is assumed at p = oo,
and it maps to a flat infinity in My provided f has a
finite limit as p — 0o. Another flat infinity in My may
be obtained either from a centre r = 0 (where A/r? — 0
as 7 — 0) or from a horizon (where A = 0 at finite 7) in
Mg. A reason is that the ratio A/r? does not change at
conformal mappings and preserves its geometric mean-
ing in My, where g = A/f and —ggg =73 =r?/f, and
a flat infinity implies g;s — 1 while r5 — oo (recall that
guv is the metric in My). Thus we must have A/r? =0
at a preimage of a flat infinity in Mj.

Assuming that a centre in Mg is located (without loss
of generality) at p = 0 and r(p) ~ p*, a = const > 0
at small p, we can evaluate the possible behaviour of
A(p) at small p from Eq.(10) and then check whether
a conformal factor f may be chosen in such a way that
p = 0is a flat infinity in Mj. An inspection, performed
separately for ¢ = 0 and q # 0, shows that such a choice
is impossible.

Horizons are not excluded in solutions to (8)—(10)
(though the potential V' (¢) must be then at least partly
negative to conform with the well-known no-hair theo-
rems). Moreover, in the scalar-vacuum case g = 0, con-
sidering asymptotic flatness at large p, only one simple
horizon (A ~ p — pp near the horizon p = py) may ap-
pear as shown in [28]. If ¢ # 0, both simple and double
(A ~ (p — pr)?) horizons may appear.

A simple horizon in Mg could map into a flat asymp-
totic in M if f ~ p — pp, then r; ~ (p — pp) /% = 00
as p — pp. However, the requirement of the proper cir-
cumference to radius ratio at flat infinity,

lg”1(r5)* = 1, (11)

is violated in this case: the expression in question be-
haves as (p — pr)~! — oo instead of tending to unity.

We conclude that static, spherically symmetric
scalar-vacuum configurations in Mg cannot be confor-
mally mapped with conformal factors f(p) > 0 into
twice asymptotically flat wormholes.

The situation is different for double horizons. Indeed,
if A ~ (p— pp)?, the requirement g;; = A/f — 1 leads
to f ~ (p— pn)?, hence ry ~ (p — pr)~! = oo, and it
is straightforward to see that the expression in the Lh.s.
of Eq. (11) tends to a finite limit. Additional fine tun-
ing (besides the special choice of parameters leading to a
double horizon) is then required to bring this expression
to precisely 1, otherwise there is a spatial infinity with
solid angle excess or deficit as, e.g., in global monopole
models.

Thus, some exceptional solutions to Egs. (8)—(10)
with ¢ # 0 describe metrics that can be conformally
mapped into twice asymptotically flat wormhole metrics
in Mj.

Explicit examples of such solutions are yet to be
found.

The next question is: which kind of STT admits such
solutions? An answer is easily obtained with the aid of
the relations (5). Let us use the Brans-Dicke parame-
trization of the general STT (2), namely, f(®) = &,
h(®) = w(®)/® (the Brans-Dicke theory as such is the
special case w = const). We also assume a generic
behaviour of the ¢ field in Mg near p = pj putting
¢'(pr) = fr # 0 and A"(pp) = A2 > 0. Then we find
that

1(®) = w(®) +3/2~ B¢37/(242) = 0 (12)

as ® — 0. So, in this limit the STT approaches the
boundary beyond which ® would become a ghost.

4. Now let us further weaken our assumptions, al-
lowing f(®) in (2) to become negative and cross zero
at some point ® = &,. For static, spherically sym-
metric solutions of the theory (2), it has been shown
[29] that, if df/d® # 0 at ® = Py, there always exist
such solutions that continue from positive to negative
f. Moreover, such solutions (which are special with re-
spect to the whole set of solutions) generically describe
wormhole geometries [29]. There exist explicit examples
of such continued solutions with both zero and nonzero
charges g, obtained for massless conformal scalar fields
in general relativity (f(®) = 1 — (1/6)®%, h(®) = 1,
U(®) = 0 in (2) [4] and for more general non-minimally
coupled scalar fields, with 1/6 replaced by an arbitrary
coefficient £ > 0 [30, 31]. However, the stability studies
performed by now [31, 9, 25] show that such wormhole
solutions are generically unstable under non-static mono-
pole (spherically symmetric) perturbations, and the in-
stability is related to a negative pole of the effective po-
tential for perturbations situated precisely at the tran-
sition sphere at which f = 0. The existence of a generic
space-like curvature singularity at f — 0 whose struc-
ture was found in [8] suggests that a similar instability
exists for non-spherically-symmetric perturbations, too.
Therefore, one should expect that for the general STT
(2) transitions to negative values of the effective gravita-
tional constant (o< 1/f) always (or at least generically)
lead to instabilities.

5. Thus, we have proved a general theorem that no
wormbholes (static or dynamic) connecting two spatial in-
finities can be formed in any ghost-free scalar-tensor the-
ory of gravity, under the condition that the non-minimal
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coupling function f(®) in the Lagrangian (2) is every-
where positive, including possible limiting values.

This result is valid in the presence of any matter
whose EMT satisfies the null energy condition, e.g., the
electromagnetic field. It is true, in particular, for the
astrophysically relevant case of scalar-tensor models of
dark energy admitting a phantom-like behaviour in cos-
mology (w < —1) [22, 12]. In other words, DE models
of this class (as well as any other models conformally re-
lated to general relativity with everywhere positive con-
formal factors and without ghost fields) do not predict
wormbholes.

We have also tried to weaken the requirements and
studied the possible behaviour of static, spherically sym-
metric vacuum and electro-vacuum configurations in
scalar-tensor gravity (2), allowing f(®) to reach zero
or even become negative. It has turned out that if f
only reaches zero, twice asymptotically flat wormhole
solutions in Jordan’s frame can exist but only in excep-
tional cases: 1) the corresponding Einstein-frame solu-
tion must comprise an extreme black hole, whose double
horizon is then mapped to the second spatial infinity in
the Jordan frame, that is only possible with nonzero
electric or magnetic fields; 2) additional fine tuning is
necessary to avoid a solid angle deficit or excess at this
second infinity, and 3) the theory itself should be very
special: in the Brans-Dicke parametrization, it should
hold w(®) +3/2 — 0 as & — 0. So, at the second
spatial infinity, the theory approaches a ghost boundary
and, since f — 0, the effective gravitational constant
tends to infinity. Such solutions may be of certain theo-
retical interest but can hardly be called realistic.

Rather a wide (although still special) class of worm-
hole solutions exists in theories where a transition to
f < 0is allowed. However, previous studies have shown
that such solutions are generically unstable under spheri-
cally symmetric perturbations, the instability appearing
due to a negative pole of the effective potential at the
transition surface to f < 0. This pole still does not guar-
antee instability, and further studies are necessary; but
even if such wormbholes can exist, their “remote mouths”
are located in antigravitational regions with f < 0. So,
they cannot connect different parts of our Universe but
can only be bridges to other universes (if any) with very
unusual physics.
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