Possible existence of nonsingular-vortex in UPt,
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A lattice of nonsingular two-quantum vortices can exist in superconducting
compounds of the UPt, type with a nontrivial pairing. An explanation is offered for
the magnetic transition in UPt;: It is interpreted as a transition from a nonsingular
lattice near H, to alattice of singular single-quantum vortices in weak fields.

Possible theoretical explanations of the phase transition in magnetic fields
H~0.6H_, in superconducting UPt, have been discussed in the literature recently.'™’
In the present letter we show that this transition may be a transition from a nonsingu-
lar vortex lattice to a singular vortex lattice. The question of nonsingular vortices has
been examined in detail previously for superfluid *He (Ref. 8) and also for triplet
superconductors with weak spin-orbit coupling.” Nonsingular vortices in supercon-
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ductors with an s pairing and with a d-type order parameter which arises in vortex
cores have also been studied.’

There are pieces of experimental evidence which indicate that superconducting
classes arise from the two-dimensional representation E, of the D, group for UPt,
(Ref. 10). In this case the order parameter would be a two-component vector
n= (7., 7, ). Let us write the corresponding Ginzburg-Landau functional for the
case in which a magnetic field is directed along the sixfold symmetry axis, z:

F = [(—ann} + B1 (a;n))* +Balmm; I + Kyp['nf pym,
+ Kopfnipm; + Kspim;pm,;)dv, (1)
where p = i#iV — (2e/c)A, a=a(T, — T),

B1>0; B>—8,5 Ki+K,+K;>|K,1; Ki>1Ks!. (2)

In the absence of a magnetic field, a phase of hexagonal symmetry apparently exists in
UPt,, according to Ref. 10. We would then have 8,>0 and %~ (1, £-i). We have
switched to the functions

—

LB o _ 6
vy = \/E‘T(ﬂx —in,); v, = \/2—0—(77,‘ +iny,) (3)
in (1).
The solution of the Ginzburg-Landau equations for a single Abrikosov vortex is
¥, =R, ()™ ; ¥, =R,, ()" | (4)

where 0 is the polar angle in the (xy) plane, and p is the distance to the center of the
vortex. At large values of p, one of the functions R ,,,,, R ,, is 1, while the other falls off

to zero over distances on the order of £ = #/ (2K, + K, + K3)/a. If, for example, the
phase W, is nonzero at large distances p, the vortex will contain m magnetic flux
quanta. In this case the numbers m and n are related by m + 2 = n. This relationship
in fact follows from symmetry considerations analogous to those used in Ref. 6. Signif-
icantly, one of the phases does not vanish at the vortex axis in the special cases
m= —2,n=0and m =0, n =2, so nonsingular two-quantum vortices are possible.
As p— w0, there can be only nonsingular vortices with a magnetic induction B directed
either along or opposite the z axis, depending on which of the phases (¥, or W¥,) is
nonzero. For a superconductor with a Ginzburg-Landau constant x> 1, such as UPt,,
two-quantum vortices near H_, are unfavorable from the energy standpoint. In fields
close to H_,, however, we can show that there is a wide region of parameter values in
which a lattice of nonsingular two-quantum vortices is more favorable than a lattice of
singular single-quantum vortices. It is possible that a transition between these two
types of lattices was observed in the experiments of Refs. 1-3.

As was shown in Ref. 5, in the case D < C?/(1 + C) [where D = (K, — K,)/2K,,
C= (K, + K3)/2K,)] the quantities ¥, and V¥, are simultaneously nonzero below
H_,, and they have the form of the wave functions of the zeroth and second Landau
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FIG. 1.

levels, respectively. For x> 1 the energy of the lattice is ~ — (H — H,, )°/f, where

Wy 12+ (P 4D+ 21+ 20) () |21, |2

b= (3)

w12+ 19, 12)?

The angle brackets here mean an average over the volume; W, and ¥, in (5) are the
solutions of the linearized Ginzburg-Landau equations at H = H,,. The problem of
finding 3 for the particular structure of the vortex lattice with nonvanishing ¥, and ¥,
is an exceedingly involved problem, and it will be analyzed separately. In the present
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letter, we will content ourselves with a calculation of S by an approximate method
similar to the Wigner-Seitz method, which yields results in a simple analytic form. For
superconductors with a single-component order parameter, this method yields very
good results.'' One can hope that again in our case this method will lead to reasonable
estimates for a regular triangular lattice. On the other hand, this method of course
ignores possible distortions of the lattice structure. As the unit cell we adopt a lattice
of circles through which the flux is equal to the quantum ¢, for a single-quantum
lattice and equal to 2¢, for a two-quantum lattice. We assume that the center of the
cell coincides with a site of the vortex lattice at which the order parameter ¥, vanish-
es. For an approximate description of the functions ¥, and ¥, within the cell, we use
the solutions of the linearized Ginzburg-Landau equations for H,., with a definite
angular momentum. With the help of those solutions, we can calculate S for the
single-quantum and two-quantum cases. We find that a two-quantum lattice is favored
from the energy standpoint under the following condition:

¢ > fib); D < ¢ (6)
"TesoR T i e

where f(b) is shown in Fig. 1, and &= 3,/83,. The hatched region in the phase
diagram in Fig. 2 (cf. Ref. 5) shows the region of values of the parameters C and D for
b =2.5. At b < 1.7, the single-quantum lattice is preferred from the energy standpoint
for all values of C and D permitted by conditions (2).

'V. Muller er al., Phys. Rev. Lett. 58, 1224 (1987).

Y. 1. Qian ef al., Solid State Commun. 63, 599 (1987).

*A. Schenstrom et al., Phys. Rev. Lett. 62, 332 (1989).

1G. E. Volovik, J. Phys. C 21, L221 (1988).

*M. E. Zhitomirskii, Pis’'ma Zh. Eksp. Teor. Fiz. 49, 333 (1989) [JETP Lett. 49, 379 (1989)].
*G. E. Volovik, J. Phys. C 21, L215 (1988).

’S. Sundaram and R. Joynt, Phys. Rev. B 40, 8780 (1989).

*M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).

°L. I. Burlachkov and N. B. Kopnin, Zh. Eksp. Teor. Fiz. 92, 1110 (1987) [Sov. Phys. JETP 65, 630
(1987)1.

97 Fisk et al., Science 239, 33 (1988).

"'D. Ihle, Phys. Status Solidi B 47, 429 (1971).

Translated by Dave Parsons

580 JETP Lett., Vol. 51, No. 10, 25 May 1990 Yu. 8. Barash and A. S. Mel'nikov 580



