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The critical exponents in the long-wavelength asymptotic behavior of the
correlation functions have been found in nonrelativistic one-dimensional models of
lattice field theory.

1. Conformal field theory has proved to be an effective approach for studying the
correlation properties of one-dimensional quantum-mechanical systems.'™® The basic
idea here is that systems of this sort have a conformal symmetry in the long-wave-
length limit, since a phase transition occurs in them at absolute zero. The correlation
functions fall off in a power-law fashion at large distances. The exponents describing
this behavior (the critical exponents) can be expressed in terms of the energies of the
lowest-lying excitations of the system in a large but finite volume.'

This approach was developed in Refs. 2 and 4-6 for exactly solvable models. In
the present letter we generalize it to continuum field theory models with a long-range
effect. It turns out that in these cases the long-wavelength properties of the system are
described by a Gaussian model: a very simple conformal theory with a unit integral
charge. The spectrum of dimensionalities of a Gaussian model is known to depend on
a single continuous parameter. The value of this parameter for specific models (and
also all the critical exponents) are determined by the nature of the short-range interac-
tion and are expressed in a universa! fashion in terms of the velocity of massless
excitations in the system.

For lattice models, however, no general relations of this sort between the critical
exponents and thermodynamic propeties have been known. In the present letter we
derive universal formulas for the critical exponents in terms of the theromodynamic
properties of the system.

We consider asystem of spin-zero particles on a one-dimensional lattice with a
Hamiltonian

L
H== 2 W VutVy¥es, ™ 25¥,)
+ + L +
YEE VIV, i,k E Y, (1)

where 9,7, ¢, are lattice Bose or Fermi operators, V, _, is a repulsive binary interac-
tion potential (V, =¥V _.), g>0is a coupling constant, and u is the chemical poten-

tial. We denote by €, the energy density of the ground state of the system; then
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p = 0€,/0u is the equilibrium density of particles at absolute zero. We assume that the
potential and the density are such that there is no gap in the excitation spectrum of the
system. Under this condition, our arguments do not depend on the specific function
V.. It is rather difficult to formulate any exact conditions on V,, although it is clear
from qualitative considerations that there would be no gap for an extremely broad
class of potentials. The boundary conditions in (1) are assumed to be periodic. It is
convenient to think of the lattice as being rolled into a ring; this interpretation is used
in §2.

2. The scale dimensionalities # of the Primar operators ¢ are known to be related

to the energies E¢ of the lowest-lying excitations of the system in a box of length L
(such that (vac|$|¢)#0) in the following way:"?

E$ — )% =2mL" 1, 2)

Here |vac) is the physical vacuum, v is the group velocity on the Fermi surface (the
sound velocity), and E }*° = €,L is the energy of the ground state of the system. The
long-wavelength asymptotic expression for the simultaneous correlation function of
the fields ¢ is

(3)

’

(vac | ¢(x) ¢ (0){vac) ~ cos(P¢x)x‘ 2h

where P, is the momentum of the state |¢), which is nonzero if there is a gap in the
spectrum of the momentum operator.

To find the spectrum of dimensionalities in system (1), it is sufficient to find the
energies of all the lowest-lying excitations at an accuracy level of L ~'. We begin with
excitations which conserve the number of particles. First, if there is no energy gap,
there is a very simple excitation with a momentum + 27/L and an energy 27v/L (a
single phonon). The dimensionality of the corresponding operator is therefore 4 = 1,
which is the same as the canonical dimensionality of the density operator ¥} ¢, . In
addition, the spectrum e(p) has a periodic branch with a period of 2mp:e 2mmp) = 0.
At large but finite L, the energies of these states, €', are no longer zero: €™ ~L ~ 1,
We also need to find the energies of these states |@, ), i.e., €™ .In systems which have
Galilean invariance, the states |#,,) correspond to a motion of the system as a
whole,”® and the calculation of their energies is a trivial matter: €™ = 47°m?oL ~".
There is no Galilean invariance on a lattice, and some other approach must be taken.

We seek states |¢,,) in the form

N
[¢,)= Z exp(z’pm z x].)\Ifm(x,,...,xN) II x[/;k [0), (4)
{x/.} j=1 k=1

where p,, =27m/L, and |0) is the bare vacuum. In the case m =0 we have
|¢o) = |vac), and ¥, is the wave function of the ground state in the coordinate repre-
sentation. For m=0, ¥, should not be greatly different from ¥, since p,, is small.

We now apply Hamiltonian H in (1) to state (4), and we choose ¥,, in such a
way that (4) is the eigenstate of this Hamiltonian with the lowest energy at a fixed
total momentum of 27mp. It is easy to verify that in this case ¥, must be wave
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function of the ground state (in the N-particle sector) of the following Hamiltonian
H(p) with p=p,,:

L
Hlp) = H+(1—cosp) £ (g, ¥, vV V., )
x=1
L
— Isinp x>:= . (w;ﬂxpx - lp;\[/w_ l) . (5)

This Hamiltonian is found from H through the transformation ¢ —exp(ipx)¢,’,
¥, —exp( — ipx)y,; H(0) = H. By virtue of gauge invariance, this transformation is
equivalent to placing system (1) in a uniform magnetic field directed perpendicular to
the plane of the ring into which the lattice is rolled (§1). The quantity p is obviously
quantized (p =p,,), and the magnetic flux through the ring is 27m.

For the energy shift of the ground state of H(p) in comparison with that of H we
can write' (at the order of L 1)

em = 1/2 Lp? (8%eo/0p? )p=o= 2mL” Lu™ 'm?. (6)

In the absence of Galilean invariance, the momentum p and the flux density

J=i¢L ¥, — 5 ¢, ) are generally not proportional to each other, and the sus-
ceptibility

n = 8%eo/op® = dj/dp (7)

introduced in (6) is a measure of the coupling of these quantities in system (1).

Letting the Hamiltonian H act on (4), we find that the energy of the state |4, ) is
equal to € in (6). Comparing with (2), we find the dimensionalities of the corre-
sponding Primar operators to be A, ,, = wv~'m’.

We now consider excitations which change the number of particles. In the case of
Bose statistics, the addition of # particles to the system leads to an energy increase of
in*y~'L 7', where y = dp/du = d*€,/du’ is the susceptibility which is the “dual” of
7 in (7). Comparing with (2), we find a new set of dimensionalities:
h,o = (4mvy) ~'n’

A relationship of a completely general nature holds between the sound velocity v,
on the one hand, and the susceptibilities 77 and y, on the other. By virtue of relation
(7) between the momentum and the flux density, the wave equation describing the
propagation of long waves becomes yd*u/dt* = 73 ?u/dx* [u(x, t) is the displace-
ment of the particles of the medium; the quantity x here may be thought of as a
continuous variable]. We then find the universal relation

v’ =nx 1, (8)

3. Combining the various types of excitations, and using (8), we thus find the
complete spectrum of dimensionalities to be
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h = n*/R* + m*R?/4, (9

n, m

where
R? = 4qvy . (10)

We have obtained the spectrum of dimensionalities of the Gaussian model.” For bo-
sons, the numbers n and m are integers. It follows from simple arguments based on the
symmetry properties of the wave function that the momentum P = 27pm of the low-
est-lying states (with a zero energy in the limit L — o0 ), expressed in units of 27p, can
be either an integer or a half-integer (depending on the parity of N):
(=1)>"=(—1)""! (Ref. 7). For fermions and for even n, the value of m is an
integer, while for odd » the value of m is a half-integer.

Using (3), we can write the asymptotic expression for the correlation functions
without difficulty. The correlation function for fermion fields, for example, has the
following behavior at [y —x|>p ™"

‘ (vaclw;wylvac) ~cos(1rp|x—y)|x—yI'z/Rz"' R*fs, (11)

This behavior corresponds to # = 1 and m = 1/2 in (9). The choice n = 1 is dictated
by the circumstance that the only intermediate states which contribute to the correla-
tion function in (11) are those in which the number of particles differs from the
vacuum number by 1. For fermions, m would then have to be a half-integer. It is easy
to see that the minimum exponent is reached in the case m = 1/2. The other correla-
tion functions are found in a corresponding way.

We wish to stress the conclusion that (10) describes the most general relationship
between the critical exponents and the thermodynamic properties of the system. When
we taken the continuum limit in (1), Galilean invariance is restored, and (10) be-
comes the same as an existing result.>”%!° In the case of exactly integrable magnetic
materials, relation (10) is the same as the expression derived previously by other
methods."" The critical exponents were expressed in terms of the susceptibility y in the
Hubbard model in Ref. 12.

I wish to thank V. E. Korepin, V. Ya. Krivnov, A. D. Mironov, and A. A.
Ovchinnikov for discussions and useful comments.

" The same result is of course found after a calculation of the energy shift by perturbation theory. It is
sufficient to consider the first two orders in p to derive the result in the order of L ~'.
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