Nematic state in an exchange Heisenberg Hamiltonian
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A qualitative case is made for the possibility of a spin-nematic state in a system of
quantum-mechanical spins with a binary exchange interaction causing a
frustration. The arguments are based on a possible instability of the spin-wave
spectrum in the Néel state with respect to the formation of pairs of quasiparticles.

An antiferromagnetic state has been observed experimentally in high-7. super-
conductors such as La,CuO, | 5 and YBa,Cu,0, , ;. This state is usually attributed to
a Cu’* (d°) configuration. Although the copper d shell does undoubtedly hybridize
with oxygen p orbitals in the sublattice of CuO, planes, the existence of a localized
moment is an experimental fact. One is naturally led to ask whether doping would
suppress the localized moments. We have repeatedly stressed (Ref. 1, for example)
that the antiferromagnetic phase should be separated from a metallic state on the side
of a low dopant density by a first-order phase transition. A question which remains is
just what happens to the localized magnetic moment in the metallic region. One might
of course suggest that a first-order insulator-to-metal Mott transition occurs, and that
in the course of this transition all the highly correlated electrons would become deloca-
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lized. In this case there would be no problem of magnetic moments. However, the
entire body of experimental evidence shows convincingly that this is not the case: The
first-order transition is apparently weak, and the presence of local moments is demon-
strated in spin fluctuations.

We would accordingly like to discuss the possible existence of—in addition to
antiferromagnetic and paramagnetic states—other order parameters, €.g., a nematic
(quadrople) state. The possibility of a quadrople ordering has been discussed in sever-
al places.”™ It has been assumed, however, that a quadrople ordering is promoted by
an exchange of high order (fourth or higher). Our purpose in the present letter is to
show that frustration in an exchange Heisenberg Hamiltonian (for example) is a
possible source of a nematic state.” [he problem obviously has no small parameters
and cannot be solved exactly, so we will content ourselves with some simple qualitative
arguments.

We consider a Heisenberg model with the Hamiltonian

A~ 1 I . A A
A=) "I(R,— Ry)Gndm (1)

(G are the Pauli matrices). We assume T'= 0, so that there are no thermodynamic
fluctuations. The results will thus be valid in both two and three dimensions. Our
qualitative arguments in favor of the existence of a nematic ground state can be sum-
marized as follows: In a certain interval of values of the parameters of the problem, the
spin-wave spectrum in the Néel state may become unstable with respect to the forma-
tion of pairs of quasiparticles.

Let us assume for definiteness that we are dealing with a two-dimensional square
lattice and that there is no exchange except for nearest neighbors (/,>0) and for
nearest neighbors along a diagonal (I, >0). The quantity 7, thus plays a frustrating
role. At parameter values corresponding to I, <I,/2, the Fourier transform of the
exchange,

Iy =Y _I(R)expligR] | (2)
R

—

has a minimum at a vertex of the Brillouin zone, Q = (#/a, w/a) (a is the lattice
constant). In this case the classical Néel state contains two collinear sublattices, so the
projection of &° onto its wave function |®,) gives us 0 = + 1:

62|®0) = exp(iQR,)|®o). (3)

Against the background of the Néel state [®,) we can introduce the operators b,
and b, which respectively annihilate and create transverse magnons; here § is the
wave vector which takes on values in the Brillouin zone for the doubled lattice B,
(Fig. 1), and a =1, | is the polarization. It is not difficult to verify that for the

operators
1 e " 1 ot At
bet = 2 {“qaq - “q+Q”q+Q} y bgy = 2 {“q”q + “q+Q‘7q+Q} ) 4
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dx

FIG. 1. Position of the points a = {(n/a,n/a), _I:“_( = (7/a,0) and 7'3, = (0,7/a) in reciprocal space.

where

1/4
5F = ) 9% exp(—igR,), v, = [ﬂ—iqz] , Be=2(1,-Ig) >0, (5)
a q

the following “commutation relations” hold:
[bqa!bz'a’]—lq%) = 50,0,:6(@'— ‘j')I(I)O)) [bqusbq’a']—léo) =0,
(b1, bl 0r]-1B0) = 0. (6)

The operators in (4) are thus “boson” operators when projected onto the Néel

state. The commutator of the operator b}, with Hamiltonian (1) is

[ﬂ-’ bZa]—M’O) = eqbzalq%)’ (7D
where €,, which serves as the magnon energy, is given by
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€g =V Beba+q- (8)

The one-particle Hamiltonian of the magnons (without the interaction) is thus

1
A= / dFe.b! boo. 9
1 (21r)2§ B 9€4%9a%a (9

How does €, depend on the parameters of the problem? In the B,,, Brillouin
zone for a tetragonal doubled lattice (Fig. 1), the magnon energy vanishes at gd=0
and has local minima at § = in,e + F, \y»here F, = (7/a0), F, = (0,m/a) (all
four points are equivalent in B, ,,: F,=F,=F). Near a local minimum we have

X

@-mn: P 1
om* 3 A= 8(]1 - 2]2), m = 8(1212.

grRA+ (10)
The gap A at the point;’) vanishes in the case I, = 1,/2, in which the structure in
(3) becomes less favorable than two “nested” Néel structures (the total number of
sublattices is four). In structural transitions, the vanishing of A is interpreted as a
phase transition by the “soft-mode” scheme. The anharmonicity is not slight for the
spin problem, so new possibilities open up for a restructuring of the ground state.

We first note that we have b, |®,) -0 at ?Iz_l;, so the Néel state is the ‘“vacuum”
for spin waves in this region of wave vectors. We are thus justified in speaking of one-
magnon, two-magnon, etc., states near F. We can construct a magnon Hamiltonian H,
which correctly describes the equations of motion for the two-magnon state

|q)2) :bZabZ'a',q)()>:
[Ha, 1,68 011 ®0) = [H, b bL, . @0). (11)

q'af 1Vqaq'al
For a general position g, ¢’ in the Brillouin zone, the Hamiltonian H, has terms of
the type bbbb + H.a.,bT bbb + H.a.,and b b T bb. The interaction of magnons has been
studied in many places (e.g., Ref. 6). An important point for the discussion below is
that if all the wave vectors lie near F, then the terms which do not conserve the
number of particles are small [ ~a”(§ — F)?]. The interaction near F reduces to a
scattering of magnons with an amplitude

(12)

aa’ 64 > 0, a=oao
.9'—qtp.a'—p ~

=1 -32I1 <0, a#d

In other words, there is a region near point _f' in the Brillouin zone in which
magnons differing in polarization attract each other. Since the amplitude in (12) is not
small, this attraction means that a bound state of magnons may form with a center-of-
mass wave vector that lies near F. Since we have U** #£0 for I, = I,/2, with A = 0, an
increase in the frustration will eventually cause the total energy of the bound state,
2A 4+ E_, to vanish (the binding energy is negative: E, <0).

The spin-wave spectrum in the Néel state can thus become unstable. A collapse
involving the formation of pairs of magnons occurs in the system. One example of this
collapse might be a nematic ordering, (0% 07}, )#6,,6,,, (o%) =0. A (bTbT) spin

(]
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symmetry, for example, does not contradict this suggestion. The case A = 0 was stud-
ied in Ref. 5, where it was shown that fluctuations lead to a quadrupole interaction for
Hamiltonian (1). However, only a scalar order parameter was found in Ref. 5.

For a large spin S, the interaction of magnons is on the order of 1/S. The problem
reduces to one of calculating the energy level of a particle with a mass m*/2 in a weak
attractive potential. We can thus restrict the discussion to §=F. In the 2D case, there
definitely exists at least one discrete level.

We note in conclusion that the example discussed above, of a frustration due to
the interaction of nearest neighbors along a diagonal, is not the only possibility. Any
long-range antiferromagnetic interaction (Ref. 7, for example) could lead to an attrac-
tion of magnons near the point F (there is no minimum of €, here, but the relation
b, |®y) =0 holds). For a momentum transfer p~R ;' the interaction amplitude
would exceed the magnon energy by a factor of (R,/a)?, where R,>a is the interac-
tion radius. We will analyze that case in a subsequent paper.

This work was carried out as part of a project of the European Branch of the
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