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Itis shown in a nonlinear theory that the quantum spectrum of excitations becomes
analogous to the spectrum of excitations of a quantum Bose liquid in the case of a
highly anisotropic ferromagnet, with a large number of interacting quasiparticles.

The nature of the ground state and the spectrum of excitations of the magnetic
subsystem of high-T, superconductors are presently being studied actively. The idea of
a possible realization of a spin-liquid state has been brought up in some of the corre-
sponding papers.'” Important roles are played here by the two-dimensional nature of
the system, the antiferromagnetic nature of the interaction, the presence of frustrated
bonds, and the low spin S'= 1/2. Acting at the same time, these factors give rise to
highly developed quantum zero-point vibrations, so it is no longer sufficient to work in
the harmonic approximation. Since the role played by quantum zero-point vibrations
is of fundamental importance in the nonlinear theory, it is natural to take up this
problem first in the case of a model amenable to calculations whose accuracy can be
monitored.

In the present letter we use the particular case of the nonlinear theory of an easy-
plane ferromagnetic with S = 1/2 (this is a nontrivial example of a system with quan-
tum zero-point vibrations) to demonstrate that anomalies arise in the excitation spec-
trum as the intensity of the zero-point vibrations increases. An important role is
played here by the incorporation of not only the dynamic interaction of Bose quasipar-
ticles but also the kinematic interaction which stems from the finite number of phys-
ical states. For this purpose, we use the formalism of an indefinite metric, and we
propose a form for the metric operator which is convenient in practice. We find that
the presence of quantum zero-point vibrations in the system leads to a contribution
from nonphysical states, which is small in a power-law fashion o (£ /I)? (where £ is
the correlation length, and I is the exchange integral), rather than in an exponential
fashion «<exp( — T./T), as has been assumed previously.

We write the Hamiltonian of the easy-plane ferromagnetic in the following form:
1
N = —EZ{ILSijJFI}g(S}”S;‘+Sf”S;’)}—HZS}°. (1)
Ig !

To go over to a Bose description, we use the Dyson-Maleev formalism, supplemented
by the procedure of Ref. 4 for introducing an indefinite metric. It can be shown that
the exact Bose analog of Hamiltonian (1) is

%B =F®XD—M; (2)
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where %, is Hamiltonian (1) in the Dyson-Maleev representation, and F® is the
metric operator. In the § = 1/2 cases, this operator is conveniently sought in the form

F® =N%F;, Fy =1+ An(a})"a}. (3)

n=2

The coeflicients 4, satisfy the system of equations

1+ 2": [n(rn—1)(n—-2)..(n—m+1)]4=0; n=2, 3,.., (4)

m=2

which can be solved easily: 4, = — 1/2, 4, =1/3, A, = 1/8, A; = 1/30,... . We wish
to stress that incorporating the metric operator in (2) restores the Hermitian nature of
the Bose analog of the Hamiltonian:

H'p = Eg + K2y + Hay) + Xie) + -5 ()((,,))+ = N(n)- (5)

On the other hand, 777, \ is not Hermitian. Note also that the operator F® in %7 ,,
and (especially) in 5, gives rise to a large number of additional terms, which
influence the properties of this magnetic material. Going over to momentum space,
using a u—v transformation a; = uza; + v;a ™ 5, and then putting the operator expres-
sions in (5) in a form with the normal structure in terms of ;" and a; (Ref. 5), we
find a system of integral equations for u;, v;:

Apsinh2py — By cosh 205 =0, up = cosh gz, vg = sinhpyp,
2
Ap=e+y > (& +2€q)ugvg
7
4 \ o 2 T
N Z To(gp; gp)v3 + N Z{Po(q, ~, 03P, k, —k)} symm Yavaigvis
7 kq

2 L (6)
By = &5 — N E To(3, —§, B, —5) uqve-
g

These equations are written within terms ~ (£,/1,)%, where &, = (I} —I3)/4 and I,
= }l + I3)/2. The quantity T, represents seed scattering amplitudes for scattering
involving four and six bosons. The excitation spectrum is determined by (;
={43 — B3} In the approximation linear in &, with B; =§; and 4, =¢; =H
— &y + Iy — I;)/2, we find the standard result of the linear theory: w; = [(H —§,
+1, —I)* —£3]"% In this case, however, quantum zero-point vibrations are
being ignored. Their effect will be taken into account if we solve system (6) to within

terms quadratic in £. In the nearest-neighbor approximation we then find the follow-
ing result for a simple cubic lattice:
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ﬂ¢= {A2 + [H - 60 + Z(w - 1) (%)210](.[0 - Iq)

2 | 1/2
o6, H)Io ~ I)? - 221 (ﬁ) Il — I7)? } , 7)
2 I wg

where the gap A ={H [H — 2£,+ 4(w — 1)£3/1,]}"* tends toward zero as H—0
according to the Goldstone theorem, and w is the Watson integral. The last term in the
expression in the radical in (7) arises because of the incorporation of the metric
operator. This result means that the presence of quantum zero-point vibrations leads
to a finite contribution from nonphysical states even at 7'=0.

Figure 1 shows the excitation spectrum of an easy-plane ferromagnet with
S =1/2 in a zero magnetic field when quantum zero-point vibrations are taken into
account (solid lines) and also in the harmonic approximation (dashed lines) for three
values of the anisotropy parameter |£|/I: (1) 0.2, (2) 0.4, (3) 0.5. The vector § is
directed along the [111] axis. We see that when the quantum zero-point vibrations are
taken into account, the increase in the anisotropy leads to a qualitative change in the
dispersion curve (compare solid lines 1 and 3), while in the harmonic approximation
there are no such changes (there is no qualitative difference between dashed lines 1
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FIG. 1.
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and 3). Since the interaction of the magnons is an attraction in the case g~ 1/a, the
incorporation of this interaction lowers the excitation energy. In the case ga<1, on the
contrary, in which the interaction is a repulsion, the zero-point vibrations renormalize
the spectrum in such a way that we have® Q. >w,. At large values of |£ |/I, at which
the zero-point vibrations are fairly well developed, and there are a significant number
of interacting seed quasiparticles, the Q, spectrum is qualitatively the same as the
excitation spectrum of a quantum Bose liquid. In particular, the form of Q; at the
boundary of the Brillouin zone (dashed line 3) suggests the appearance of new quasi-
particles.
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