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A procedure is proposed for incorporating the effect of fluctuations in the order
parameter on the dynamics of noncritical long-wave degrees of freedom. The
dynamic characteristics of such degrees of freedom are unambiguously related to
the generalized susceptibility of the system with respect 1o the field which is the
conjugate of the square of the order parameter. Explicit formulas for making a
detailed comparison of theory and experiment are proposed for a wide range of
transitions.

In this letter we take a theoretical look at dynamic critical phenomena.

It has now been established that the nature of the singular behavior of static
physical quantities near a second-order phase transition is determined primarily by
whether this transition belongs to some universality class or other, the number of
which is limited. It is for this reason that one can describe the static critical properties
of various substances by a common theoretical model,"* which explains the basic
behavior of the substance near the phase transition: the scaling, the relationship among
the various critical exponents, and so forth.
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With regard to critical dynamics, the situation is less satisfactory. Despite the
large number of studies of this problem, there is no overall picture of dynamic critical
phenomena. The primary reason for this situation is that in the dynamic case the
critical effects are manifested in a far more complex way than in the static case.
Moreover, substances whose static critical behavior can be described within a common
universality class may differ completely in critical dynamics.

The theoretical studies of critical dynamics that have been carried out can be
divided into two groups. The first is made up of semiempirical studies, in which
calculations are carried out from expressions which do not have a really solid founda-
tion. The second group is made up of studies of simple dynamic models on the basis of
the conventional theory of phase transitions. The basic results which have been estab-
lished in this direction are described by Haplerin and Hohenberg.*

This approach has led to some important results on the actual dynamics of the
order parameter. The hypothesis of dynamic scaling has been verified for several spe-
cific examples by a renormalization-group procedure. The primary difficult which
arises along this approach is that one cannot incorporate in the renormalization-group
procedure the dynamics of degrees of freedom other than the critical one.

In the present letter we demonstrate how this difficulty can be overcome. We
have managed to develop a procedure for relating the structure of the correlation
functions of hydrodynamic variables, which carry comprehensive information on the
long-wave dynamics of the system, with the dynamic correlation function of the order
parameter. This relationship can be written out explicitly for a wide range of second-
order phase transitions.

Here are the basic steps which must be taken in this procedure.

First, it is necessary to construct a complete system of nonlinear dynamic levels
for the long-wave variables. This system includes both an equation for the order pa-
rameter 3 and equations for weakly fluctuating variables. Among these variables are
the densities of conserved quantities (mass, energy, and momentum) and variables
associated with a spontaneous symmetry breaking (the director in a nematic liquid
crystal, the displacement vector in a crystal, etc.). The basic nonlinearities are then
distinguished in the dynamic equations.

Second, an effective action [ is constructed from the nonlinear dynamic equa-
tions. This action makes it possible to formulate a diagram technique for calculations
on dynamic fluctuation effects (see, for example, Ref. 4). One can then effectively
eliminate from consideration the weakly fluctuating quantities, by integrating the dis-
tribution function exp(il) over them. Since these variables are weakly fluctuating, it is
sufficient to retain in the action I terms of up to second order in the deviations of these
variables from their equilibrium values. The integration of exp(il) over weakly fluctu-
ating variables then reduces to the replacement of I by an extremum in terms of these
variables.

The action obtained as a result describes the actual dynamics of the order param-
eter . Its structure of course depends on the nature of the transition under considera-
tion. If this action is renormalizable, the correlation functions of the order parameter
will satisfy dynamic scaling laws. Halperin and Hohenberg® have carried out studies of
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this sort for several models.

Third, the correlation functions of the weakly fluctuating quantities must be ex-
pressed in terms of the correlation functions of the order parameter. One can do this
by retaining in the action the dependence on the “currents” which are the conjugates
of the weakly fluctuating variables as these variables are being eliminated and by then
expanding a generating functional in terms of these currents. We wish to stress that
the dynamic correlation functions of weakly fluctuating variables will no longer satisty
any simple scaling laws.

Below we write out some explicit formulas which have been derived by the proce-
dure outlined above. We are thinking of such phase transitions as orientational phase
transitions in liquid crystals, phase transitions to a ferromagnetic or superfluid state,
etc. In these cases, the expansion of the energy in the order parameter 3 contains only
even terms. Along with them, the expansion of the energy should contain terms of an
expansion in deviations of the weakly fluctuating variables from the equilibrium val-
ues.

We denote by ¢, the deviations of these variables from their critical values. Since
the variables ¢, are weakly fluctuating, it is sufficient to retain only those terms of the
expansion which are linear and quadratic in ¢,. For the transitions under considera-
tion here, they are

1 1 .,
5 PaBabes + E'/’z:apa- (1)

Here and below, a repeated index implies a summation.

For several transitions the quantities 3, and =, are simply a set of constants. If
the ¢, include such quantities as the displacement vector u of a crystal lattice, the
quantities 3,, and Z, are differential operators, since the energy of a crystal may
depend only the derivatives V,u,. All the formulas below hold in both cases, but in the
second case 3, and E, are functions of the wave vector.

The dynamic correlation functions of weakly fluctuating quantities are expressed
in terms of the function F(w,q), which is the generalized susceptibility of the system
with respect to the field conjugate to ¢ 2. The function F is analytic in the frequency in
the upper half-plane and is related by the following equation to the Fourier component
of the correlation function (¢ %(£r)¢ %(0,0)):

< $?9? >, = 4iTw™ (F(w) — F(-w)). (2)

Here T is the temperature. Relation (2) unambiguously relates the function F and the
correlation function (1 %3 2). Expression (2) follows from the fluctuation dissipation
theorem.

The critical behavior of the dynamic characteristics of a system can be found by
replacing the matrix 3,, by the following expression in the linearized seed equations
for the quantities @,,:

Bab(w,9) = Bap — BLFB, (1 + B2 B BaF) 2. (3)
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Here =, and 3, are generally functions of the wave vector q, F depends on both q and
o, the matrix 3 ' is the inverse of B,,, and Z*(q) = Z,( — q). Expression (3) gives
the matrix f3,, renormalized because of the fluctuations of the order parameter.

For example, the linear equation for the Fourier component of the velocity v is
{pwbix ~ W™ GigbkBab + M Im In ok (w, @) = iFy(w, @), (4)

Here p is the mass density, %%,,, is a seed viscosity tensor, F, is the density of the
external force applied to the system, and the quantities g,, figure in the linear dissipa-
tion-free equations for the variables ¢,,:

WPa = —tgaiVi.

The dispersion relations of the dynamic modes of the system are determined by setting
the determinant of the matrix in braces (curly brackets) on the left side of (4) equal to
Zero.

We wish to stress that Eq. (4) holds, regardless of whether there is a mean-field
regime or highly developed fluctuations. All the corresponding information is encoded
in the particular form of the function F(w,q), which determines the renormalized
matrix /3,, according to (3). Equation (4) describes the critical behavior of acoustic
and viscous degrees of freedom over the entire region near the phase transition. It can
therefore be compared in detail with experimental data. One such comparison was
made in Ref. 5, for the case of a (smectic A)—(smectic C) phase transition.

Equation (4) leads to an extremely complex crossover behavior of the dynamic
characteristics, as a result of both the crossover behavior of the function F and the
complex F dependence of the matrix 3,,. For example, for the low-frequency viscosity
coefficients, which determine the sound attenuation in the region of developed fluctu-
ations, there is a crossover from the behavior o« |7 — T,| *~* to the behavior
o |T—T,|~**“ Here z is a critical dynamic exponent, and v and « are the critical
exponents of the correlation radius and the specific heat.

Equations (3) and (4) above solve the problem of relating the critical behavior of
observable dynamic characteristics to the correlation functions of the order parameter
which satisfy dynamic scaling relations. This problem was solved in Ref. 6 for the
particular case (smectic A)-(smectic C) phase transition.
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