Relaxation of nuclear spinin a 2D electron gas
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The nuclear spin relaxation rate has been calculated. The relaxation occurs asa
result of the formation of spin excitons in the presence of a random impurity
potential in a strong magnetic field.

The nuclear spin relaxation rate 7, ' was measured in a high-grade heterostruc-
ture in a strong magnetic field,"” and the nuclear orientation was achieved by a
dynamic polarization in ESR. The polarization subsequently shifted the position of the
ESR because of the Overhauser effect, making it possible to measure it. A Korringa
relaxation was observed experimentally, i.e., the spin was found to flip in the electron
gas, as was initially suggested in Ref. 3. Since the electron Zeeman energy is much
higher than the nuclear energy, and since 2D electrons in a magnetic field have dis-
crete energy levels, such a process cannot occur without allowance for the electron
energy in the random impurity potential. The Coulomb interaction of electrons, which
dramatically changes the effective g-factor, is also of considerable importance. These
two circumstances greatly complicate the calculation of the relaxation rate compared
with the case of electrons in the absence of a magnetic field. In the calculation of the
depolarization rate, carried out by Berg ef al.,> the one-electron density of states was
assumed to be known and the interaction was taken into account by introducing the g-
factor which depends on the filling of the Landau levels.

We will analyze this problem more systematically, in a slightly idealized formula-
tion, where all the electrons completely fill the Landau spin sublevel (whose spin is
opposite that of the nuclear spin). In the more general case of a fractional filling, we
will restrict the analysis to the mean-field approximation and calculate the probability
for the occurrence of a spin excitation in such a system, i.e., a spin exciton* with zero
energy. The principal factor determining this process—the density of states of the spin
exciton with zero energy (disregarding the nuclear magneton)—always must be taken
into account in the expression for the relaxation time.

A general equation can be found for the depolarization rate by making use of the
perturbation theory for contact hyperfine interaction (see, for example, Ref. 2). This
equation can be written in the variables associated with the production of spin excitons
in the form
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where v, and _ are the filling factors for spin-up and spin-down electrons in the last
filled Landau level n, and L, 1is the Laguerre polynomial. We_) assume

* =costi/eH = 1, #i=1, A is the hyperfine interaction constant, and G(k,w), the
Green’s function of the spin exciton, is expressed in the usual way in terms of the
operators which create the spin exciton,
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(aand a* are the operators which create electrons in the Landau gauge, and N, is the
number of states in the Landau level), and which are Hermitian conjugate. The nor-
malization was chosen in such a way that the expectation value of the commutator
would be ({([4 ; 4,]) =1), as it should be for a particle.

The particularly simple case* v, =1, v_ =0 can be analyzed in detail in the
fower order in the ratio of the Coulomb energy E. = e*/xl, (x is the dielectric con-
stant) to the cyclotron energy #w,. Extending this result for the mean-field theory to
arbitrary v, we easily find an effective Hamiltonian for spin excitons in an external
field,

2
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where 1/2m = 1/4\/7r¥/2(1/+ —wv_)é/«l,, U@ is the random potential acting on
the electrons, and » is a unit vector in the direction of the magnetic field directed
perpendicular to the 2D layer. In deriving (3) we assumed the momentum of the
exciton to be small and so we expanded it in the momentum, while the electron
density, v, and v_, was assumed to be uniform.

There is some justification to assume that the electron density of states is deter-
mined by a relatively large-scale potential created by the charged impurities which are
removed a distance roughly corresponding to that of the spacer. We will assume,
therefore, that the random potential is a Gaussian potential with a large correlation
radius, and we will use a semi-classical approximation. A zero spin excitation energy
can be reached only as a result of relatively rarely encountered random potential
fluctuations. This circumstance makes it possible to use the maximum-fluctuation
method to calculate® ImG(k, ). Clearly, the maximum fluctuation corresponds to
small values of k%, k*~|g|uH /E, <1. This result justifies an expansion in the mo-
mentum which was used in the derivation of Hamiltonian (3), while 7' is actually
determined by the density of states. The calculation itself is rather standard, except
that the single-particle Hamiltonian has the form (3), instead of the usual sum of the
kinetic energy and potential energy.

The largest contribution comes from the maximum fluctuation, in which the spin
exciton is localized near a certain point with a small momentum p* = 2guHm with a
zero velocity. The nuclear spin relaxation rate in this case is
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where R " (0) is the second derivative of the pairing correlation function of the random
potential at » = 0. For a continuous random potential, the result thus contains only the
mean-square value of the random potential gradient [which is equal to R " (0)]. This
makes it possible to determine the asymptotic result (4) slightly more precisely if the
exciton is considered in a random uniform field (VU = const). The flipping rate in a
uniform field can be calculated from perturbation theory and after averaging over
various VU we obtain.
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This integral can be calculated by the steepest-descent method or numerically. The
results of calculation with the parameters for GaAs, along with the experimental data,
are shown in Fig. 1. The adjustable parameters are the scale 7, ' (the common
factor) and R " (0) =910~ * (meV/nm)?

Despite a qualitative agreement, the region of high magnetic field cannot be re-
produced well. The discrepancy can be attributed to the following factors: (a) The key
fluctuations in this case are the small-scale fluctuations of the random potential. (b)

FIG. 1. Experimental points and curves
calculated from (7) for R " (0) =9x10~*
(meV/nm)? The magnetic field is plotted
along the abscissa (in Tesla) and T ' is
plotted along the ordinate (in arbitrary
units).
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The random potential itself depends on the filling factor of the Landau levels, which
actually is the case for the electron density of states.
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