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Acoustic turbulence has been analyzed in the case where there are two acoustic
branches and the key process is the decay of a phonon of one branch into two
phonons of another branch in the given case or the emission of a phonon by another
phonon through Cerenkov radiation. In addition to the well-known

(Kolmogorov) turbulence spectrum and the Rayleigh~Jeans distribution, the
kinetic equations were found to have two more power solutions with

€.~k ~'and e, ~k°.

The acoustic turbulence in an ordinary compressible liquid was first studied by
Zakharov and Sagdeev.! Assuming that the amplitudes of sound with different wave
vectors are statistically independent, and assuming the validity of the Kolmogorov
hypothesis, which states that the energy flux along the wavelengths is constant, Zak-
harov and Sagdeev' obtained, on the basis of a dimensional analysis, a power function
€, ~k ~*/* for the energy density €,. They showed that the same result is obtained
from the kinetic equation for phonons. The applicability of the kinetic equation and
the results obtained by Zakharov and Sagdeev were criticized by Kadomstev and
Petviashvili.> They showed that linear dispersion of sound, which leads to a decay
along the straight line, does not give rise to randomization of phases, but rather to the
formation of shock waves, which accounts for the entirely different shape of the spec-
trum. The key role of higher-order processes was noted in the earlier studies of Landau
and Khalatnikov.?

This problem can be avoided if the system has two acoustic branches, and if the
allowed processes are those processes which convert the vibrations of one branch into
those of the other. An example of such a system is an isotropic solid in which the
spectra of the longitudinal and transverse phonons are nondecay spectra

Dy, = Snﬁ(l - Vl,tqz); N> 0,
where w,, is the frequency, S;, is the velocity, and ¢ is the wave vector. There can
occur cubic anharmonicities of the type (diviz)® and (curl#)? divi, where 7 is the
displacement. The first anharmonicity is not effective since a decay of longitudinal
sound into two longitudinal sounds is forbidden by the energy conservation law. The
second anharmonicity gives rise to an allowed decay of the longitudinal sound into two
transverse sounds.

The second example is the interaction of the longitudinal sound with spin waves
in an isotropic antiferromagnet. The anharmonicity that can occur in this case is of the
form divi (v, )%, where [, are the components of the 2D vector of transverse vari-
ation of the order parameter. In this case the phonon can decay into two spin waves,
but the Cerenkov radiation is forbidden. The example of two-fluid hydrodynamics in
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superfluid helium is slightly more uncertain. The decay of the first sound into two first
sounds, of the second sound into two second sounds, and of the first sound into two
second sounds and the Cerenkov radiation of the second sound by the first sound are
in principle allowed in this case.' In actual situations, however, one of these processes
plays the key role. There is a regime in which the dominant process is the decay of the
first sound into two second sounds,® while the remaining processes can be ignored.

The collinearity of the decay processes is not satisfied under conditions which
were discussed above. The higher-order processes are then inconsequential and the
kinetic equation for phonons of various kinds can be used.

We will show that in addition to the two known solutions corresponding to the
Rayleigh-Jeans distribution and the Kolmogorov distribution, these equations have at
least two more power-law solutions.

For definiteness we assume that only the decay 1-22 is allowed. We denote by
N (k) and n(k) the filling numbers of phonons of type 1 and 2, and £} (k) = 5,k and
o (k) = s,k are their frequencies.

The kinetic equations can be written in the form

N(F) = f ky W (F; B, R2)5(O(K) — O(ks) — Q(ka))(nima — Ny — Nmg), (1)
A(F) = / By W (B F, B2)8(Q(E) — (k) — Q(k))(Nan + Ning —nng), ()

where 1_22 k- lhél, and the probability for the decay W can be written in the form
W (K; kv, k2) = kkyka f (k; Ky, k2) (3)

where f(k; k,, k,) is a homogeneous function of degree O with respect to its arguments.
We seek steady-state solutions of the kinetic equations of the power-law type.

N(k) = Ak*; n(k) = Bk’. (4

The condition under which Eqgs. (1) and (2) are soluble will then take the form

ad = be, (5)
where

= /dakIW(k; k1, k) 6(0 — wy — wa)k{kS, (6)

b= /d3k1W(k; k1,k2)6 (0 — wy — wa)k® (k] + k3), 7

- /d3k1W(k1;k, k2)6 (w + wq — )k k3), )

= /d3lc1W(k1; ky k3)6(w + wy — 4 )ky (K + K3), )
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Applying the Kac-Kontorovich transformation® k, —k 2/k !, k, - k,k /k,, to inte-
grals (8), (9), we obtain

¢ = / A2k, W (k; k1, k2)6(Q — wy — wo) k8120 8222 k2, (10)
d= /d3k1W(lc; ki, k2)6 (0 — wy — wy) k84208720 (k8 1 k). (11)
Comparing (10) and (11) with (6) and (7), we find four roots of Eq. (5), s
= —9/2, —4, —1,0.Fors = —9/2 wefinds = s,/25,a,b = 5,/25,d. For s
= —4wehavea = ¢,b = d;fors = —1wefinds; a = s,band s;¢c = s5,d.

Finally, fors = 0,2d = b and 2c = d. Although the integrals obtained in this case
sometimes diverge, the collision integrals (1) and (2) converge when appropriate
constants a and b are chosen, because the integrands are the same or nearly the same.
The new solutions apparently involve an additional integral of the kinetic equations,
given by

J-(n(k) —2n(k))d *k.

Such analysis is also applicable to the case where the only process is the Cerenkov
radiation. If, however, the two processes occur simultaneously, only the Kolmogorov
solution, s = — 9/2, and the Rayleigh-Jeans distribution, s = — 1, will remain.
The non-Kolmogorov solutions in the anisotropic magnetized plasma were previously
found by Balk and Nazarenko.’

The energy density is €, ~n, k >~k *** In the solution s = — 9/2 the energy is
concentrated near the small values of £, but in the solution s = — 4 the energy
diverges logarithmically near the small and large values of k. The energy flux is nonlo-
cal in scale. Ats = 0, — 1, the energy is concentrated in the short-wave region. The
energy flux is local in the wave space (scale) only for the solution with s = — 9/2.
Interestingly, when s = O, the energy flux is from small scales to large scales.

I wish to thank S. V. Nazarenko for a useful discussion.
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