Magnetization versus external magnetic field in layered
superconductors

S.S. MaslovandV.L. Pokrovsky
Landau Institute for Theoretical Physics, 117940, Moscow, USSR

(Submitted 23 May 1991)
Pis’'ma Zh. Eksp. Teor. Fiz. 53, No. 12, 614-618 (25 June 1991)

For an anisotropic layered superconductor we have calculated the magnetization
versus the absolute value /#” and orientation of the external magnetic field. The
curve displays a cusp at afield #° = 777, (), where @ is the angle between the field
and the layers, and a maximum at a certain characteristic field #” = 5°;(9)

o« (sin §) ', in agreement with the experimental measurements by N. V.
Zavaritsky and V. N. Zavaritsky. We predict the existence of an intermediate
critical field % = %, (0) « (sin &) ~ !, at which the component of the magnetic
induction perpendicular to the layers first penetrates the sample. The magnetic
susceptibility y = dM /377 has ajump at #” = #7,(8). The jump is very small at
@> v~ ', where yis the anisotropy coefficient. In this range of angles one can
observe a cusp on a graph of y vs 77 at 77 = J7,. This prediction of the theory isin
good agreement with the experiment.”

In isotropic type-1I superconductors the magnetization vs the magnetic field has a
maximum at the first critical field #°,,, as it was first shown by Abrikosov.'! At lower
fields the field does not penetrate the superconductor (the complete Meissner effect).
In a recent experiment by Zavaritsky and Zavaritsky® the magnetization M | Vs the
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magnetic field has been measured in a strongly anisotropic, layered superconductor
Bi 2-2-1-2. The magnetization revealed a cusp at lower critical field and an additional
maximum at a higher field, depending on the angle € between the external magnetic
field and the layers. In this article we explain this phenomenon on the basis of a model
of a homogeneous anisotropic superconductor. The layered structure leads to a cusp in
the graph of the magnetization vs the magnetic field at an intermediate value of the
magnetic field. However, this is a weakly pronounced cusp in the total range of angles,
except at very small angles. Instead, one can observe a strongly pronounced cusp in a
graph of the magnetic susceptibility.

For a homogeneous anisotropic superconductor the magnetization vs the magnet-
ic field was calculated by Buzdin and Simonov.? They have found the lower critical
field H,, and the maximum of magnetization at a higher field. In contrast with their
numerical calculations, we account for the layered structure and use a simplified ver-
sion of the free energy, which enables us to make a straightforward analysis. Feinberg
and Villard* were first to predict the locking of kinks in a tilted magnetic field. Unfor-
tunately, their analysis did not incorporate the demagnetizing factors, which are
crucial for this problem. In addition, they have not calculated the magnetization
explicitly.

We start with an approximate expression for the free energy of an anisotropic
layered superconductor®

81r 4ix

, (1

where B and B, are the components of the magnetic induction B parallel and perpen-
dicular to the layers, respectively; H, and H, are the characteristic magnetic fields
which vary logarithmically with the magnetic field and angle, and > = m_./m,,, is the
ratio of effective masses. The second term on the right side of Eq. (1) is due to
Campbell et al.® Roughly speaking, this is a contribution of a homogeneous anisotrop-
ic superconductor. The third term is due to kinks on the tilted vortices (Ivlev ez al.”).
The free energy (1) has a logarithmic accuracy (InA /£) ~' at low magnetic fields,

,¥H,, and a much higher accuracy « H,/7 in the intermediate range of fields,
H, <7 <H,.

The internal field H can be found by differentiating:
oF

H 4153 (2)

For an ellipsoidal shape of a sample the magnetostatic problem can be solved explicit-
ly, giving the following relationship between the vector H of the external field and the
magnetic induction B:

¥=iB+(1-aA)H=B -4x(1-A)M . (3)

Further, we consider a symmetric case where the ellipsoid axes coincide with the
crystallographic axes. Then the nondiagonal components of the demagnetizing tensor
are equal to zero. Differentiating the free energy (1) and substituting Eq. (3), we
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obtain

(4)

Nz = B; + (1 - nzz)—ﬁ%:

Hy = B,+(1—n,,)(\%-:_p2+stignB,),, (5
where p = y¥B,/B,.

We find the region of the complete Meissner effect, putting B, = B, = 0. Let the
values p = yB,/B, and o = sign B, remain undefined and varying in the intervals:
— 1<p, o<1. This region, designated as region 1, is defined parametrically by the
equations

H
)(z = (1 - n,,)\/—l——-:=p2 y

Mo = (1- nas)(—E12_ 4 oy,

T

The boundaries of this region are two straight lines,
B; = :t(l - nzz)Hl, , B, 'S (1 —"".n)HZ )
and two ellipses,

X2 st (1 = npe)Ha)?
(L-nz)?H] * (1-na)*(vH)?

(see Fig. 1). In addition, there exists the region of partial Meissner effect, where the
parallel component of the induction B, penetrates but the perpendicular component
B, does not (region 2). This region is situated outside region 1 and between two
straight lines

In the experiment by Zavaritsky and Zavaritsky? the angle & between the layers

and the external magnetic field was fixed and the parallel magnetization M, vs the
absolute value of the magnetic field #” was measured. We present here the analytical

FIG. 1. Phase diagram of a layered superconductor in
the %", %", plane. See the explanation in the text.
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calculations of M and the perpendicular component of magnetization M, based on
Eqgs. (4) and (5).

In region 1 we obtain the standard formulas

(cos8)?  (sin#)?
- 6
M’" 4" (1 - nzz + 1 - n" ’ ( )
¥ sinfcosh 1. 1
= - . 7
M, 4x (1 —n,, 1- n,,z) 7

At a fixed angle ¢ the complete Meissner effect proceeds until 77 =7,
= (1 —n,)H,/ cos 0, provided that § <@., where
- n.u)H 2

L] rctan 1
= a A NS 4. S A,
¢ (1 - "zz)Hl

As can be seen in Fig. 1, a straight line corresponding to a fixed value of < 8, crosses
first the vertical line 5% = 5 and then the horizontal line 77, = (1 — n_ ) H,.
Between these two crossing points the magnetization obeys the equations

sin #)?2
M) = (310089 Ni_ﬂl), (8)
1 ) sinf cosd
M, = Z;(-H;smo-}-)(——i—_—_—"—;—). 9)

A simple calculation shows that there exists a parallel magnetic susceptibility jump Ay
at = 7,

[H2(1 - n,;)cos§ — Hi(1 — nzz)sin 6] sm0
Ax Hyy* (1 - ﬂ,,,)2

Ax) = (10)

For 8«1 the ratio Ay/y~ (1 4+ v¢) ~'. Thus the cusp is well pronounced at small
O<y~' and very weakly pronounced at #>y~'. The corresponding value of 8 for
Bi 2-2-1-2 is about 1°. Disregarding the jump of y, we find an approximate expression

1 cosf
_ — 2 _ 3 — - 2

M) = prr [ ” V(VHL(1 = ny))? — (X sin8 — (1 — n,,) Ha)

+)((sin0)2] . (11)
My

FIG. 2. Schematic diagram of the parallel

magnetization vs the magnetic field.

7, X, Hy H
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Equation (11) is valid at 0 >1 and in the range of fields 577, <% <77
= (yH, + H,)/sin 6. It displays a spurious singularity at 5% = ;. Expression (11)
is invalid in a small neighborhood « (¥8) ~'* of the point &% = %7;. In this range
the parallel magnetization peaks and then decreases slowly to 5%, (see Fig. 2).

Returning to the point /% = 77, we find from Eq. (11) a jump of the parallel
susceptibility derivative
dx) _ cosf(sinh)?

AN T (- Hi

(12)

The relative jump A(dy, /377)/(dy, /37") is of the order of unity. For completeness,
we write down the expression for the transverse magnetization:

sin 8 Y cosf _V(H(1 = ny,))? — (¥ sind — (1 — n,,) Hp)? - '

M= ——22

We have analyzed the experimental data® for the magnetization vs the field in
order to find the magnetic susceptibility y,. The cusps in the graphs of y, vs % are
clearly seen in the tilt angle range from 15° to 80°, although the general calculation is
rather inaccurate. The external magnetic field corresponding to the cusp at a fixed
angle 6 was multiplied by sin 8. The result is shown in Fig. 3. According to the theory,
it should be a constant equal to (1 — r,, )H,. We observe a good agreement between
theory and experiment. The experiment? can therefore be considered as the first clear
evidence of the appearance of kinks.

For completeness we show the z component of the external magnetic field at the
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FIG. 3. The critical value of ", corresponding to a cusp in the magnetic susceptibility (the open circles)
and the value of %", corresponding to the maximum of M (the filled circles) obtained by analysis of the
experimental data.’
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maxima of the parallel magnetization (1 — n,, ) (yH, + H,) according to Ref. 2. From
the experimental data we find H, =3 Oe and H,=~75 Oe.

We are indebted to N. V. Zavaritsky and V. N. Zavaritsky for stimulating discus-
sions and for providing the original experimental data.
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