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Analytic solutions of the nonlocal electrodynamic problem describing the
relaxation of a vortex are derived for a Josephson junction with pronounced
damping. The length scale of the vortex is assumed to be smaller than

the Josephson length A,.

In Ref. 1 we derived an equation which serves as the foundation of a spatially
nonlocal electrodynamics of Josephson junctions:
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where A is the London depth, A, is the size of the Josephson vortex, w; is the Josephson
plasma frequency, and K(z) is the modified Bessel function. For a spatial variation of
the phase which is smooth at the scale of A, this equation reduces to the ordinary
sine-Gordon equation. In the opposite limit, the integral nature of the right side of Eq.
(1) is important, as was shown in Ref. 1.

Gurevich? has derived a steady-state asymptotic solution of Eq. (1) for A»A, in
which case the approximation Ky(z) =~ In(2/x)—C, where C=0.577 is Euler’s con-
stant, can be used. That solution is
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In the present letter we report some results on a time-dependent resistive relaxation of
a vortex. This relaxation is described by the customary>* addition of another term to
the left side of Eq. (1). In the limit of strong dissipation, 8>w;, we then find
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where = (RC}) —1 R is the resistance, and C, is the capacitance per unit area of the
Josephson junction. In the nonlocal asymptotic limit A»A, we find the following
time-varying solution of Eq. (3):

p(zt)=m+2 arctanl(—zt)—. (4)

The time dependence here is given by
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Solution (4), (5) describes the relaxation of a vortex in which the length scale /()
varies with the time, from some initial value /(0) to the steady-state value derived in
Ref. 2. We see, in particular, that if the vortex is initially singular, i.e., if /(0) </13/1“1,
then a nonsingular steady-state vortex is established over a time ~Ba)j2.

The magnetic field of time-varying vortex (4) has a structure similar to that
discussed in Ref. 2:
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where 2d is the width of the transition layer, the argument x—d corresponds to the
region x> d, and the argument x+d corresponds to x < —d.

Equations (4)-(6) describe the temporal relaxation of an asymptotic vortex in
the nonlocal electrodynamics of a Josephson junction with strong damping—a relax-
ation which results in the formation of a steady-state vortex. If, instead of (4), we use
another asymptotic solution of Eq. (3),

z

@(z,t) =2 arctanm, (7
it, too, will correspond to the magnetic-field structure described by Eq. (6). However,
in this case the length scale of the vortex, /(¢), increases in accordance with
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as time elapses. The increase in the length scale of the vortex is described by the latter
expression only under the condition /(#) €A. In this case it is legitimate to use a
logarithmic approximation of the modified Bessel function.

Yet another time-varying resistive solution of Eq. (3) is

(AA7%2)2+d* (1)

@(2z,t) =m+2 arctan bz(t)

(9)

In this case the functions a(¢) and b(z) obey the equations
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After a sufficiently long time t>Bw 2, according to (10), the temporal relaxation
of the vortex may go into a regime with a*>#% a(t)=~B 'wt, and H*(r) =t
X exp(—B~'wk). This regime corresponds to a damping of the vortex.
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In summary, the first time-varying analytic solutions describing a resistive relax-
ation of vortices in the nonlocal electrodynamics of Josephson junctions have been
reported in this letter.
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