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In a similar way as was done previously in layered crystals {I. E. Dzyaloshinski,
Pis’ma Zh. Eksp. Teor. Fiz. 46 (1987) [JETP Lett. 46 (1987)]}, the transition
temperature of a bee crystal can be increased to the critical value due to the
presence of van’t Hoff singularities. [ Editor’s Note: Page number for reference 1
was not provided in original Russian manuscript. ] In this case 7, o« exp ( — const/

gl /3 ) .

In the preceding letter' we have examined the effect of the van’t Hoff singularities
on the temperature at which there is a transition in tetragonal layered crystals to
which La,CuQ,, for example, belongs. We found that the nature of the transition
changes if the van’t Hoff singularity occurs in the middle of the Brillouin zone surface,
that there is a coherent displacement of the singlet superconductivity and of the spin-
density and charge-density waves, and that the transition temperature increases':
T, <exp ( — const/g"/?).

Why then is the maximum increase of 7. attributable to the van’t Hoff mecha-
nism? The answer to this question lies in the straightforward generalization of the
arguments advanced in Ref. 1 and in the paper by Prelovshek et al. cited there. Let us
consider a bee crystal and use a simple formula for the electron spectrum

L wp L
€(p)~cos b1 cos 2 cos p3'
o 2po 2po
If there is exactly one electron per cell, the corresponding Fermi surface is a cube with
the vertices (in units of p,) A—111, B—111, C—111, etc. We need now only to repeat
verbatim the arguments advanced in Ref. 1.

()

The description of the phenomenon, as before, is determined exclusively by the
neighborhoods of the points 4, B, C ... . In contrast with the two-dimensional case,
however, expression (1) is not a van’t Hoff singularity of the general position even for
a highly symmetric point at the zone boundary. In the dimensionless momenta x,, x,,
x5 the overall spectrum is

GA=°‘("§ +x3 +x3) 4B (X1 x5 +X1X3 +X2X3) HUPX1X2X3 (2)

and the correspondingly for B, C ... . If 5, a €vp,, then the overall picture of the Fermi
surface, given by (1), remains the same and at temperatures 7, and chemical poten-
tials of the transition (.| (cf. Ref. 1), which lie in the interval a, B<T,, |u. | <up,
the coefficients & and £ in (2) may be set equal to zero.

At B, a = 0 both the Cooper and the null-acoustic loops are cubic in the loga-
rithms. For example,
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CAc~ZAB~El£2€3;
(3)
AQ@po)''?
max (T, |1V, x @po)''?)

£l=ln ; 1=1,2,3;

A 51 is a dimensionless cutoff momentum. The summation of diagrams of the same
order, g€ ,£,65~ 1, gives us an estimate of the transition temperature

T,, lu, | ~ A’vpg exp (— const/g '/3), (3a)

but it reduces, as before,' to the solution of equations for a fast parquet with many
vertices. This problem can, however, be simplified by taking into account the periodic-
ity of all vertices. The periods of the reciprocal (bcc) lattice are 220, ... and 400, ... .
Consequently, if we are considering only the neighborhood of the eight vertices of the
cube in question, then 111, 111, 1,1,1, and 111 can be joined at one point A and the
remaining 111, 111, 111, and 111 can be joined at the other point B. It is quite obvious
that there is only one Cooper loop and one null-acoustic loop

P
CAB =ZAB =?1T—3; 512253 .

The corresponding parquet is described by the diagrams in Fig. 1.

The equations for a fast parquet (cf. Ref. 1) are still quite lengthy, even for a
simple diagram. We will therefore restrict the discussion, as in Ref. 1, to the analysis of
their polar solutions. Two vertices are mixed up in the parquet in Fig. 1: ¥(4BBA4) and
the vertex with the umklapp y(44BB). Their spin structure is given by

'y(ABBA)=716a76ﬁ5 -726‘!6667, "

Y (A4BB) =738, 845 —GMSM).
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The vertices and charges are measured in units of 7°v/p3. We again have two types of
poles with respect to the temperature or the chemical potential: moving and station-
ary. In the stationary pole (k =1, 2, 3) we have

Ty

3£5(5-%)

In the Cooper channel or the null-acoustic channel the moving poles can be written in
the form

2
A UDg (5)

max (T,{pl)

Ty

k-8

with & taken from (5). The position of these poles depends on the projections of the
Cooper momentum ¢ or the null-acoustic momentum z, onto the 1 and 2 axes, for
example, by means of &, (¢,z) in (6):

A

€1,2.21,2)

T (6)

£12 =In

As was explained in Ref. 1, the problem of finding and analyzing the stationary
poles reduces to a single-logarithmic parquet problem, defined by the diagrams in Fig.
1, in the variables £ = £ 3. The corresponding problem in the notation (4) was solved
by Larkin ef al.? The parquet is described by differential equations (9) of Ref. 2. These
equations have three stationary points (I',I°,I'5):

110) o—1+—1—)
(—2—,( 5 E 5 )

All three points are stable, and the corresponding phase diagram in the space of the
seed charges g,, g,, and g, is constructed in the figure in Ref. 2. At the point (110) the
responses behave as®

Xss ~Xcpw ~A+& BY VY, xgpp ~0, (7a)
and at the points (0 —} + 1) they behave as

)Y, xgs <0 (7b)

Xspw ~Xcpw ~ (o — £
&, in (7b) is given in Ref. 2.

The Cooper channel has two poles. The (110) pole corresponds to the singlet
superconductivity (SS) with a pole singularity in ysg,while the ( — 110) pole corre-
sponds to the triplet pairing (TP) with the pole in yrg. The null-acoustic channel has
both pure spin-density waves and pure charge-density waves with poles in yspw and
Ycpw, as well as a combination of these waves.

We thus see that the triplet superconductivity is the principal feature of the cubic
crystal under consideration in comparison with the tetragonal crystal considered pre-
viously.! Furthermore, aside from the pure states, there can also be, as before, coher-
ent mixtures: SS 4+ CDW and SDW + CDW.
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