f-state pairing in superfluid ³He-A₁

G. E. Volovik

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR

(Submitted 20 April 1987)

Pis'ma Zh. Eksp. Teor. Fiz. 45, No. 11, 548-550 (10 June 1987)

A dipole interaction in ${}^{3}\text{He-}A_{1}$ leads to an induced superfluidity of particles whose spin is oriented along the magnetic field. In a parallel-plane geometry these particles become paired into either a p state or an f state, depending on the texture of the orbital vector \mathbf{l} . Reversing the magnetic field causes a transition from one state to another.

The transition of liquid ³He into a superfluid state in an external magnetic field is known to involve an initial transition to the A_1 phase, where the only fermions that are paired are those whose spin is antiparallel to the field H, so that the magnetic moment is directed along H (Refs. 1 and 2). A weak spin-orbit (dipole) interaction mixes the states with the different spin projections, with the result that an energy gap Δ_1 is also induced for the spin-up quasiparticles (those whose spin is oriented along the field).³ Although the induced gap Δ_1 is several orders of magnitude smaller than the gap of the majority carriers of the superfluid current, Δ_1 , MHD experiments carried out at a low frequency $\omega < \Delta_1$ can detect the existence of spin-up Cooper pairs.⁴

In the present letter we analyze the induced superfluidity of spin-up fermions in the case of a parallel-plane geometry, with plates separated by a distance smaller than the dipole length $\xi_d \sim 10^{-3}$ cm. We will show that, depending on the orientation of the

orbital vector \mathbf{l} with respect to \mathbf{H} , the pairing of the minority carriers in ${}^{3}\text{He-}A_{1}$ (spin-up fermions) occurs into either a p state or an f state.

If we ignore the dipole interaction, we would describe Cooper pairs in ${}^3\text{He-}A_1$ by means of two quantum numbers: the spin projection, $S_z=-1$, onto the magnetic field $(\mathbf{H}\|\hat{\mathbf{z}})$ and the projection of the orbital angular momentum of the relative motion of the atoms in the Cooper pair. Let us assume that the plates bracketing the ${}^3\text{He-}A_1$ are oriented perpendicular to the magnetic field. The unit vector \mathbf{l} , which determines the direction of the orbital angular momentum, is then oriented, by virtue of the boundary conditions, either along or opposite \mathbf{H} . The projection of the orbital angular momentum onto the magnetic field, L_z , is therefore 1 in the case $\mathbf{l}=\hat{\mathbf{z}}$ and -1 in the case $\mathbf{l}=-\hat{\mathbf{z}}$.

The dipole interaction has the consequence that neither S_z nor L_z is conserved separately; only the projection of the total angular momentum, $J_z = L_z + S_z$, is conserved. A state with $J_z = 0$ occurs in the case $\mathbf{l} = \hat{\mathbf{z}}$, while a state with $J_z = -2$ occurs in the case $\mathbf{l} = -\hat{\mathbf{z}}$. Consequently, the dipole interaction gives rise to an admixture of Cooper pairs with $S_z = 0$ and $S_z = 1$; in a state with $J_z = 0$, they correspond to orbital-angular-momentum projections $L_z = 0$ and $L_z = -1$. In a state with $J_z = -2$, they correspond to the projections $L_z = -2$ and $L_z = -3$, which are possible only if the orbital angular momentum takes on a value L = 3 or higher.

In the case $\mathbf{l} = \hat{\mathbf{z}}$ the pairing of minority carriers (with $S_z \neq -1$) thus occurs into a p state, while in the case $\mathbf{l} = -\mathbf{z}$ and f state necessarily arises. This circumstance sets the present case apart from that of a free geometry,³ where \mathbf{l} is oriented perpendicular to the magnetic field, so the angular momenta do not combine in a simple way. As a result, the pairing of the minority carriers always occurs into a p state. Although an f state in superfluid ${}^3\text{He-}A_1$ has been discussed previously, it has been treated as an admixture to a p state which arises far from T_c because of nonconservation of the quantum number L in the nonlinear Gor'kov equations. In the case at hand, an f state arises as a pure state near T_c on the Fermi surface of the minority carriers; far from T_c , this state contains admixtures of states with higher angular momenta: L = 5, $7, \dots$

What is the size of the gap Δ_+ induced at the Fermi surface of the spin-up quasiparticles in a state with $J_z=-2$? Since Δ_+ is dominated by the $S_z=1$ state, we consider in the order parameter—a symmetric spinor $\Delta_{\alpha\beta}(\mathbf{k})$, which depends on the momentum of the paired quasiparticles—only a superposition of two states, $(S_z=-1,L_z=-1), (S_z=1,L_z=-3)$:

$$\Delta_{\alpha\beta}(\mathbf{k}) = i(\sigma_{y}\vec{\sigma})_{\alpha\beta}(\mathbf{d}_{\downarrow}(\mathbf{n}) + \mathbf{d}_{\uparrow}(\mathbf{n})), \quad \mathbf{n} = \mathbf{k}/k_{F} \quad , \tag{1}$$

where $\vec{\sigma}$ are the Pauli matrices; the vectors **d** are given by

$$\mathbf{d}_{\perp}(\mathbf{n}) = \Delta_{\perp} \mathbf{e}^{*}(\mathbf{e}^{*} \cdot \mathbf{n}), \quad \mathbf{d}_{\uparrow}(\mathbf{n}) = \Delta_{\uparrow}^{f} \mathbf{e}(\mathbf{e}^{*} \cdot \mathbf{n})^{3}, \quad \mathbf{e} = \overset{\wedge}{\mathbf{x}} + i \overset{\wedge}{\mathbf{y}}, \tag{2}$$

 $|\Delta_1|$ and $|\Delta_1^f|$ are the corresponding amplitudes of the energy gap at each of the Fermi surfaces, and the superscript f means that the gap arises because of pairing in an f state.

The Ginzburg-Landau functional for Δ_1 and Δ_1^f is

$$F_{GL} = -\alpha |\Delta_{\downarrow}|^2 + \beta |\Delta_{\downarrow}|^4 + \lambda_d (\Delta_{\downarrow} \Delta_{\uparrow}^{f^*} + \Delta_{\downarrow}^* \Delta_{\uparrow}^f) + \alpha_f |\Delta_{\uparrow}^f|^2. \tag{3}$$

The first two terms, with $\alpha \sim N_F (1 - T/T_{c1})$ and $\beta \sim N_F/T_c^2$ (N_F is the state density, and T_{c1} is the temperature of the transition to the A_1 phase), correspond to a functional for pure p pairing; the third term, with $\lambda_d \sim (\xi_0/\xi_d)^2 N_F$ (ξ_0 is the coherent length at T=0), describes a dipole interaction of oppositely directed spins. This term is found by averaging the magnetic-dipole interaction of the ³He atoms over state (1), as was done in the review by Leggett. The last term, with $\alpha_f \sim N_F$, describes the positive energy of the f state.6

A minimization of expression (3) with respect to Δ_{\perp} and Δ_{\perp}^{f} leads to the following estimate of the amplitude of the gap in the f state:

$$\Delta_{\uparrow}^{f} \sim \left(\frac{\xi_{0}}{\xi_{d}}\right)^{2} \Delta_{\downarrow} \sim 10^{-5} \Delta_{\downarrow} , \qquad \Delta_{\downarrow} \sim T_{c} \left(1 - \frac{T}{T_{c1}}\right)^{1/2}.$$
 (4)

This gap is smaller by an amount $1 - T/T_{c1}$ than the gap Δ_1^p in the p state, which arises in the case $J_z = 0$, i.e., with $1||\hat{\mathbf{z}}|$:

$$\Delta_{\uparrow}^{p} \sim \left(\frac{\xi}{\xi_{d}}\right)^{2} \Delta_{\downarrow} \qquad \xi \sim \xi_{0} \left(1 - \frac{T}{T_{c1}}\right)^{-1/2}. \tag{5}$$

A transition from the p state to the f state and back can be arranged in the given texture of the vector I by rotating the magnetic field through 180°. The states can be identified by, for example, MHD experiments capable of distinguishing between states with $J_z = 0$ and $J_z = -2$. In a state with $J_z = -2$, the relative gauge-rotation symmetry is broken. Specifically, order parameter (1),(2) changes both under a gauge transformation and when the vector e is rotated around the z axis. It is not possible to distinguish between the effects of these transformation, however, since each leads to a multiplication of the order parameter by $e^{i\alpha}$. According to Ref. 7, this symmetry breaking should lead to a magnetothermomechanical effect. In a state with $J_z = 0$, only the gauge symmetry is broken, so that such an effect should not occur at low frequencies $\omega < \Delta$,.

I wish to thank W. P. Halperin for pointing out the need to publish these results.

Translated by Dave Parsons

¹A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975); J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).

²R. Ruel and H. Kojima, Phys. Rev. B 28, 6582 (1983).

³H. Monien and L. Tewordt, J. Low Temp. Phys. **60**, 323 (1985).

⁴R. Ruel and H. Kojima, Phys. Rev. B 34, 6511 (1986).

⁵W. Wojtanowski and P. Wölfle, Phys. Rev. Lett. **56**, 488 (1986); U. E. Israelsson, B. C. Crooker,

H. M. Bozler, and C. M. Gould, Phys. Rev. Lett. 56, 2383 (1986).

⁶J. A. Sauls, Phys. Rev. B 34, 4861 (1986).

⁷M. Liu, Z. Phys. B **40**, 175 (1980).