Theory of the spin gap in bilayer cuprates
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A model of two planes of antiferromagnetically correlated electrons coupled
together by a weak antiferromagnetic interaction of strength A has

been formulated and solved. It is shown that in-plane antiferromagnetic
correlations dramatically enhance the pairing effect of the interplane
interaction. For the case in which the in-plane correlation length k™ 'is ~ 7'
we find that the interaction A leads to spin pairing at a temperature
T* ~ 1 much higher than the usual BCS result, exp( —J/4). We suggest that
this is a possible explanation of the spin-gap effects observed below

T*~150 K in YB2,Cu;Oq.

—1/2

It was recently argued that superconductivity and spin gaps in bilayer copper
oxides such as YBa,Cu;0q , , are attributable to interplane pairing'~ which occurs as
a result of the antiferromagnetic spin-spin interaction between the planes. Effects of
this interaction have been observed in neutron scattering experiments® on
YBa,Cu;044. The high-T. materials are also believed to have strong in-plane antifer-
romagnetic fluctuations. An alternative mechanism for spin gap formation in copper
oxide materials based on a single-plane theory of bosonic spin-waves has also been
discussed.’ In this paper we determine the effect of the in-plane fluctuations on the
interplane pairing interaction which was discussed previously. We found that these
fluctuations strongly enhance the interaction between the planes at wave vectors near
the wave vector Q, where the in-plane spin susceptibility peaks. Taking into account
this enhancement and the modification of the electron spectrum by the spin
fluctuations,® we obtain an estimate for the onset temperature of the spin gap which is
of the correct order of magnitude.

Several different cases which were encountered were discussed in detail
elsewhere.” The first case is the relationship between the vector Q and the shape of the
Fermi surface of the fermions: The vector Q might be a chord of the Fermi surface, its
diameter, or it can be larger than 2p,.2) In this paper we will consider only the chord.
The second case concerns the strength of the spin correlations. Here we assume that
the spin system in each plane is very close to a T'=0 critical point® which results in
long-range antiferromagnetic fluctuations, whose correlation length is proportional to
the power of the temperature. The third case is the nature of the fermionic excitations.
We can single out the “‘spin-liquid” case, with a spin-charge separation and fermionic
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spin excitations,” and the “Fermi-liquid” case in which there is no spin-charge sepa-
ration. Formally, the difference between these two cases stems from the presence of an
additional low energy mode (gauge field) in the spin-liquid case,'® which results in a
large relaxation rate for the fermions [the electron propagator therefore is''
(B> —vp|p—pr|) ~']. We will consider both cases here. It is also believed that in
underdoped high-T', materials the electrons cannot tunnel coherently between the
planes.'? We will assume, therefore, that all low energy excitations are confined to a
plane.

To model one plane of antiferromagnetically correlated fermions we write

He= 2, cho€(@)Cpot 2 IS5 4, (1)
4 q

where €(p)=vr(|p| —pp) is the fermion dispersion near the Fermi surface, S;=
c}aaaﬁcp(,. It is also convenient to introduce the fermion mass m=pp/vy. The inter-
action J, causes antiferromagnetic correlations to peak at the wave vector Q. For
definiteness we treat the interaction in the RPA approximation and assume that the

parameters are such that the spin susceptibility y (k,w) is given by

Xo(k,w)
X(k’w)zl——Tk—Xo(k—#r) (2)
J—l
2 (3)

K+ (k—Q) 2+ [0|/T’

where Y, is the susceptibility of the noninteracting fermions, «, the inverse correlation
length, is assumed to be small, and I is a microscopic frequency scale. Presumably
'~ 1/m, or T~ J/p%. To fit the Cu NMR relaxation rates in high-7", materials at high
temperatures, it is necessary to use k2=MT, where M is a constant. We emphasize
that, although we have used the RPA to explain the form of (3), this form is more
general than the explanation in Ref. 6, and so are the following results which depend
on (3) only. The specific form of (3) holds only if the wave vector Q <2pg, so that
at all wave vectors near Q a particle-hole pair is available to damp the spin excitation.

In the following analysis we choose polar coordinates on the Fermi surface, so
that the points on the Fermi surface connected by Q correspond to angles £6,. The
form (1) applies to both the spin-liquid case and the Fermi-liquid case. In the Q=2p;
case the different functional form of y depends on whether the fermion damping is
small or large.

We assume that the only coupling between different planes is an antiferromag-
netic interaction between spins:

Hu=A XSSP, 4)

i
where the indices 1 and 2 distinguish planes in a bilayer, and A is an interaction
constant which is assumed to be small. The neutron measurements* imply that A ~200

K, but clearly A ¢J, where J~1500 K is the exchange constant in one plane.
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FIG. 1. Diagrammatic representation of the domi-
nant contribution to the pairing interaction. Here the
light dashed line represents the interplane interaction
and the wavy line denotes the dressed spin-fluctuation
interaction between electrons in one plane.

The interaction (4) leads to antiferromagnetic correlations between planes, which
we assume to be weaker than the in-plane correlations. An arbitrary, weak A was also
found’ to lead to a singlet pairing of spin excitations in different planes. In our study
the antiferromagnetic correlations in each plane were disregarded and the temperature
at which the spin pairing occurred was found to be very low, T.~é€ge™*/“F. We have
shown that in the presence of antiferromagnetic correlations the pairing interaction
becomes much stronger at the wave vectors near Q, the temperature at which the
pairing occurs increases considerably, and the gap function becomes strongly aniso-
tropic, opening first in a small region [about {6— 8,) ~«/p,] near the points connected
by the vector Q and then dropping at some distance from these points as 1/(8—6,)*.

The physical argument is that, because the susceptibility in one plane is very large
at wave vectors near Q, a fermion at this wave vector polarizes the electrons in the
neighboring plane in a large area near it. Mathematically, we must construct the
pairing vertex which connects a particle in one plane to a particle in the other plane.
For small A this vertex is linear in A and is dressed by spin fluctuations in each plane:
In the RPA approximation we have found that the dominant contribution to the
dressed vertex V(k,w) is that shown in Fig. 1, which leads to

H;fltz Zk V(k,w)C;+kO'anC;,+kO'an,,
- (5)
V(ko)=Aga Y (kw),

where a is the lattice constant. Other contributions are negligible. To calculate the
onset of the pairing from Eq. (5), we must sum the ladder diagrams shown in Fig. 2.
It is important to use the complete Green’s function, including the self-energy due to
the spin exchange in one plane. This self energy has been studied by many authors. An
approximation useful for our purpose is'?

[0} =
3 2 3
2apg /T +p2(0—6p)* + K>
FIG. 2. Ladder sum leading to the gap equation. Here
the shaded rectangle is the interaction ¥ defined in Fig.
- -+ 1. Note that the electron lines are dressed by in-plane

fluctuations.
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where ag is a function on the order of unity if Q is removed from 2py, but which
diverges as Q—2pr. We have verified that this formula applies in the spin-liquid case.

The important point here is that the gap is due to the pairing of spin excitations
on different planes, so the interaction (5), although large in a certain region of mo-
mentum space, does not lead to self-energy parts or to vertex corrections. The gap
equation therefore follows from the summation of the ladder series in Fig. 2. Taking
the ladder sum and integrating over the momenta in the direction normal to the Fermi
surface, we obtain

A(e,0)

T Amb(e+w,0')do’
“4r f[|a)|/r+pp(92+9'2+2u93')+K2]2 Vio+2(0)*+A(e+0,6)*
(D
where u=1—Q?%/(2pr). We have set 6,=0. The integration over the perpendicular
momenta was possible because the main contribution to this integral comes from a

narrow range near the Fermi surface (6p’ ~ T/vy), where the interaction V(p—p’,0)
does not vary significantly.

To find the onset temperature, we linearize (7) and introduce the scaled variables
x and y through 8=«x/pr and ' =«y/pr. The resulting equation is

1
n+l4= |

A,/ \[ 1+)? +m

27 2
ln+l+5|(1+y2+x2+2uxy+ |l|)

A
An(x)=m 21: Jd}’ (8)

where / and 7 are integers. From (8) it is evident that A depends only on 1+ x? which
is found only in the denominator of the kernel. Thus, A(8) peaks near 8=0 with a
width « and decays at large 0 as 1/6%, and peaks again near the lowest Matsubara
frequency, w,=T, with a width [«?~ T. The dimensionless kernel in (8) presum-
ably has the largest eigenvalue, w~ 1, so T* is given by

. wA 9)
—ZaQMaEJ '

Thus, apart from numerical factors, the onset temperature 7* is given by the bare
interplane coupling constant A. At T <€ T* we can replace the sum over the frequencies
in (7) by an integral; this integral is dominated by the frequencies on the order of the
zero temperature spin gap A(0)=A*. Similarly, we must replace x> by MA*, because
the low-frequency spin correlations near the antiferromagnetic wave vector Q are
eliminated by the spin gap. The result is that within numerical factors 7% in (9) is
replaced by A*. The gap reaches the maximum value at angles 65 JMA¥; for larger
0 it is given by
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A(8) a2 —T——(A*)3M2
PF PF94 )

We emphasize that due to a strongly peaked, temperature-dependent effective
interaction the pairing temperature and the gap scale as the interaction constant, in
contrast with the usual BCS case in which they are exponentially small. Although we
have assumed a specific form of the spin susceptibility (3) with a temperature-
dependent correlation length, this assumption is not essential for our results. The
enhancement of the pairing between the planes is attributable to the strong tempera-
ture dependence of qu’(q,w=0)2. This quantity was measured in the NMR T,
experiments'® and was found to be large and strongly temperature dependent in
YBa,;Cu;0,_ , (Refs. 14 and 15).

The situation in the spin-liquid case is essentially identical. The square of the
momentum-integrated Green’s function is || —=(w,0)]7", but Blw|¥? is still
negligible compared to 2(w,8) for the frequencies and angles of interest. Equations
(8) and (9) therefore remain the same.

Let us now consider the experimental implications. The pairing mechanism is
much weaker in La,_ ,Sr,CuQ,, because the antiferromagnetic interaction between Cu
ions in different planes is frustrated, so that in tetragonal crystals Eq. (4) becomes

H=1 > s{Usiy, (10)
i8

where § labels the four Cu sites in plane 2 which is equidistant from site / of plane 1.

Equation (10) implies that ¥ (k,w) in Eq. (5) becomes

Vi (k,w) = V(kw)cos(k,/2)cos(k,/2). (11)

Thus the singularity in the interaction is eliminated for commensurate spin fluctua-
tions (k,, ky~7r) in the tetragonal crystals. For orthorhombic crystals or for incom-
mensurate spin fluctuations the singular part of the interaction is on the order of the
square of the orthorhombicity or incommensurability, and is therefore small. This is
consistent with the observation that the spin gap opens at much lower temperatures in
La,_,Sr,CuQ, than in YBa,Cu;0q_ ,.

In a Fermi liquid system with no spin-charge separation the opening of the spin
gap implies that the material has become superconducting. In a spin-liquid system true
superconductivity occurs only at a lower temperature at which the charge carriers are
a Bose condense. The former scenario is consistent with the behavior of optimally
doped or overdoped YBa,Cu;O¢, , and with the behavior of La,_,Sr .CuO, at all
dopings, while the latter scenario is consistent with the behavior of underdoped
YBa,Cu;04, ,. For example, in YBa,Cu;0g, the spin-gap effects have been observed
in NMR below T* 150 K, while the superconducting 7', is ~60 K. As previously
pointed out,! there is also optical evidence'® for the existence of a gap above T .- The
small value of the specific heat jump at 7', in YBa,Cu304 ¢ (Ref. 17) is consistent with
this scenario. However, none of these observations (except the qualitative one which

69 JETP Lett, Vol. 59, No. 1, 10 Jan. 1994 loffe et al. 69



shows that the spin gap opens significantly above T, only in underdoped bilayer
materials such as YBa,Cu;Og,) distinguishes the mechanism we have proposed from
other possible origins of the spin gap.

There is a qualitative disagreement with the experiment. Because the gap opens
first and is largest at the points on the Fermi surface connected by the wave vector
where y(k,w) peaks, the low-frequency antiferromagnetic spin fluctuations are sup-
pressed more strongly than the spin fluctuations at other wave vectors. In the high-T',
materials it is believed that the antiferromagnetic fluctuations are responsible for the
enhancement of the Cu relaxation rate over the relaxation rates of the other nuclei.® In
our scenario the copper relaxation rate would therefore decrease more rapidly than the
oxygen or yttrium rates as the spin gap opens, in apparent disagreement with the
experimental data’® on YBa,Cu,Oqs.

Note added in proof: As this manuscript was being prepared, we learned that M.
Ubbens and P. A. Lee' have obtained results very similar to ours.

DAlso at Landau Institute for Theoretical Physics, Moscow.
DAl these conditions have trivial generalization for a nonspherical Fermi surface. For brevity we discuss
only the circular case here.
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