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Percolation processes in the skin layer cause the effective conductivity, which
is part of the surface impedance of a metal-superconductor mixture, to

have an anomalous frequency dependence and an anomalous temperature
dependence.

The properties of an electromagnetic wave reflected from the plane surface of
some material are known to be determined by the effective longitudinal conductivity o.
Since the wave is attenuated inside the medium, within a surface layer with a thickness
on the order of the penetration depth A, and since the screening current is also
concentrated in this layer, the quantity o is the effective conductivity of the medium
over a length scale on the order of A. For percolation media and also any fractal media,
the electrical properties of the layer depend strongly on its thickness L (Ref. 1). In
particular, the threshold for longitudinal percolation and thus the longitudinal con-
ductivity depend on the thickness of this layer.

Let us consider a mixture of normal (metallic) and superconducting inclusions,
with respective conductivities o, and o, satisfying the condition |o,/0,| €1. We are
interested in the properties of this medium in the case in which the concentration of
superconducting inclusions is above the 3D percolation threshold, i.e., the case in
which the dc resistance of the medium is zero. If the concentration of the supercon-
ducting phase is below the 2D percolation threshold, however, quasi-2D longitudinal
percolation in a surface layer of thickness L will occur only under the condition
L> L, where the critical thickness L, depends on the concentrations of the phases.’
Over length scales smaller than L. we are dealing with an effectively homogeneous
metal with isolated superconducting inclusions. Under the condition L>» L., we are
dealing with a “poor” superconductor with metallic inclusions. At L~ L, the con-
ductivity of the layer varies sharply with the layer thickness. Correspondingly, the
effective longitudinal conductivity in our case is a function of the penetration depth:
o=0(A). This penetration depth, on the other hand, is related to the conductivity by
the standard formula

L (1
Al =pgo| 0| Y, y=sm(z+5arga), (n

where 1/2 € 7/2 < 1. Substituting the known expression for 0(4) from Ref. 1 into (1),
we find a self-consistent equation for the effective conductivity, which is part of the
surface impedance of this metal-superconductor mixture.

As a specific realization of this model we consider inhomogeneous high-T, su-
perconductors, many properties of which can be explained by a percolation model of
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the superconducting transition (Ref. 2, for example). For such high-T'. superconduc-
tors, both the relative amount of the superconducting phase and the conductivities
o, and o, depend on the temperature. We assume that a two-fluid model with real
o, is valid; we then have Re 0, < 0, and Im o, ~ @~ !. The transition temperature
T, corresponds to 3D superconducting percolation in this case, while a quasi-2D
percolation occurs at T'<T,. We consider frequencies for which the relations
a<4A<R<a|oy/0,|? hold. Here R is the 3D correlation radius of the percolation
problem, a is the average size of an inhomogeneity, ¢=v/(s+1¢), and v, s, and ¢ are a
correlation-radius index and conductivity indices for 3D space. A specific property of
this model is that Re (A1) has a sharp maximum at A~A.= L, while |g(A)| varies
monotonically. This conclusion follows directly from the asymptotic behavior of o(1)
near A, which we will see below. Under the condition A <A, we have

—p(4
0=0,(A/a)"*[1(2)] 7%, T(/l)=pL£(—Z, (2)

Pa

where z is the 2D analog of the index s, p; is the 2D percolation threshold, and p(A4)
is the effective concentration of the superconducting phase at the length scale' A. This
concentration increases with increasing A. The asymptotic behavior in (2) is valid to

() > [(A/a)?|o, /0| ), F=1/(z+6), (3)

where 6 is a 2D analog of the index ¢. At smaller values of 7(4), the conductivity is
determined by the asymptotic behavior corresponding to A=A4,:

{—s
0=(0,,00)"(a/A)’, 8=—_=01. (4)

The case A > 4., in which |7(4) | also satisfies inequality (3), actually corresponds to!
A~R, so for such length scales we have

o=0,(a/R)" +A40c,(R/a)*", (3)

where A4 is a positive constant on the order of unity.

From the experimental standpoint, the percolation regime of the reflection of
electromagnetic waves from a disordered superconductor is seen most clearly in the
temperature dependence and the frequency dependence of the effective longitudinal
conductivity. The real part Re o(7') has a clearly defined maximum corresponding to
A=A4,, and the conductivity itself satisfies the following equation at this point [see (1)
and (4)]:

g=exp (g)[(yzazuoa))5|a,,as| 1VC=8 y=sin(37/8). (6)

The conductivity has a nontrivial frequency dependence, which is governed by the
index 8. Since A, depends on the relative concentration of the phase and therefore on
the temperature, the position of the maximum of Re o is determined by the equation

AT ) = [@®PPuow | 00| 2] V270, (7
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The characteristic half-width AT of the maximum is determined by the condition that
AT pax — AT) be equal to the depth to which the electromagnetic wave penetrates
into the sample at T'~0—A(0):

~[P3—P(Tax—AT) 1 = (pa—Pe3) [2(0) /a] . (8)

Here p(T) is the relative concentration of the superconducting phase at the given
temperature, and p.; is the 3D percolation threshold.

A peak in Re ¢ similar to that discussed above was observed by Klein ef al.’ in
measurements of the surface impedance of a YBaCuO crystal. Klein ef al.® attempted
to interpret this peak as a coherence peak, using an adjustable parameter, but it was
shown in a recent review* that the true nature of conductivity anomalies of this type
in high-T, superconductors has not been resolved. In the case of thin films, for exam-
ple, the existence of a peak in Re o would follow directly from the 2D percolation
model of the superconducting transition.

At a qualitative level, the results of Ref. 3 agree with the percolation-reflection
regime discussed above. In particular, the sample thickness was much larger than the
depth of penetration into any of the phases, the transition temperature in terms of the
resistance was 92 K, and the peak was observed at 7,,,,~89 K. Since we do not have
information on the function p(T") for that experiment, we can offer only a crude
estimate of the width of the peak, based on data on the temperature dependence of the
surface impedance Z,=R;+iX;. At 92 K we have R;~X, and the test sample is in
the normal phase. At 86 K we have R; /X;~0;i.e., the sample is an essentially 100%
superconductor. It was in this interval that the peak in Re o was observed. For
X;/R;at T=T,,, expression (6) yields a value of 2.4; the experimental value is 2.8.
From the temperature dependence of Z; we also have X (95 K)/X (86 K) ~5; using
the two-fluid model, we then find Re o(Tp,,)/0,=~4( a/A)%, where o, is the
conductivity of the normal phase at 95 K. From (6) we have Imo=Reo at
T=T,.; we can thus determine A from (1). Using the experimental value of
Re o(T ., )/0,~2.2, we can thus estimate the average size of the inhomogeneity; we
find @~0.3 um. This result agrees with, for example, an estimate of a corresponding
quantity in Ref. 5. However, the most reliable way to compare the predictions of the
present study with experimental data would be to measure the frequency dependence
of the magnitude and position of the maximum of Re o. These properties are described
by expressions (6) and (7).

We wish to thank O. G. Vendik and A. L. Korzhenevskii for useful discussions
of questions discussed in this letter.

YA. V. Neimark, Zh. Eksp. Teor. Fiz. 98, 611 (1990) [Sov. Phys. JETP 71, 341 (1990)].
28. A. Vitkalov, Zh. Eksp. Teor. Fiz. 103, 1305 (1993) [Sov. Phys. JETP 76, 640 (1993)].
0. Klein et al., J. Phys. (Paris) 2, 517 (1992).

*J. T. Moonen et al., Phys. Rev. B 47, 14525 (1993).

50.G. Vendik er al, Solid State Commun. 84, 327 (1992).

Translated by D. Parsons

436 JETP Lett., Vol. 59, No. 6, 25 March 1994 A. A. Luzhkov 436





