Wess-Zumino action for the orbital dynamics of 3He-4
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A singularity in the dynamics of the orbital angular momentum in *He-A is
explained on the basis of an anomaly which results in a transfer of angular
momentum from vacuum to excitations. This process is equivalent to the creation
of electron-positron pairs in an electric field. A Wess-Zumino function which is
found leads to a source of angular momentum. The presence of a vortex singularity
on the Fermi surface in *He-4 leads to a close relationship between the orbital
dynamics and the dynamics of vortices.

The vanishing of the energy gap at two points on the Fermi surface in superfluid
*He-4 at k = + k leads to several problems in the dynamics of *He-4 at low tem-
peratures. Some of them have been solved. 1) The existence of an anomalous orbital
current — (1/2) Cil(1curl 1) with C, = k 3./37 %, which is approximately the same as
the density p, is a consequence of a chiral anomaly which leads to an asymmetric
branch of the fermion spectrum, which intersects the Fermi surface.!”? 2) The same
branch gives rise to a nonzero state density in the presence of texture in the field of the
vector 1 and thus gives rise to a nonzero density of the normal component at T=0
(Refs. 1-3). 3) The nonconversation of the vacuum current j at 7 = 0 is also a conse-
quence of a chiral anomaly: the nonconservation of the chiral current,*

185 0021-3640/86/150185-05%$01.00 © 1986 American Institute of Physics 185



2
e« 1
= . [ d * = — B
B“JJ‘ 8712F‘“’F , F, 2F Cuvap (n
where F,, is the strength of the “electromagnetic” field A = k. In *He-4, the cre-
ation of chiral fermion excitations is accompanied by the creation of momentum from
vacuum; i.e., there is a source of vacuum momentum®>>:
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4) The nonanalytic logarithmic behavior of the gradient energy at® T = 0 stems from
the null-charge phenomenon,” which is well known in quantum electrodynamics.’

In the present letter we examine the singularity in the dynamics of the orbital
angular momentum. The Lagrangian formalism, when applied to the dynamics of the
vector 1 (Ref. 8), contradicts an elementary analysis,> which leads to an additional
right side in the law expressing the conservation of the internal angular momentum of
Cooper pairs, L =1 pl:
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where 8 is the orbital rotation angle of the order parameter. The projection of 8 onto 1
corresponds to a phase of a Bose condensate. Equation (3) contains both a mass
conservation law and an equation for the vector L
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The right side of Eq. (3) may be thought of as an anomalous source of angular
momentum because of the transformation of the vacuum angular momentum L into
the angular momentum of excitation, L., caused by the “electric” field
E= — A= — k.l This transformation corresponds to the creation of electron-posi-
tron pairs in an electric field, since the role of L. in quantum electrodynamics is
played by the charged-particle current J. The only difference is that in *He-4 the
fermions should be created in any field, by virtue of the zero mass, while in real
quantum electrodynamics pair creation requires a certain threshold.”'? If we ignore
dissipation due to collisions of particles, we conclude that the current of particles
should increase: J~E. In *He-A, this effect would correspond to an increase in the
angular momentum of the excitations, L_,, = — (1/2)C,\. The coefficient of the pro-
portionality between j and E in *He-4 is determined by the conservation of the total
internal angular momentum, (8/9¢) (L + L, ) + 6F /59 =0, while this coefficient
remains unknown in quantum electrodynamics with massless fermions.

We can show that the right side of (3), like the right side of (2), is a consequence
of a chiral anomaly characteristic of massless fermions. For this purpose we examine
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that part of the action which leads to a Schwinger source of chiral current in (1). This
part of the action is unusual in that in order to write it we need to introduce an
additional, fifth coordinate, as in the case of Wess-Zumino functionals'!:

Sz = xl-z;zfdtdaxdxse“ﬂ"“”AaFm F, (5)
The integration is carried out over a five-dimensional manifold whose boundary is
physical 4-space. According to the Noether theorem, in order to conserve the chiral
current J°, we would need to perform the gauge transformation 4, -4, +d, y and
vary the action with respect to the parameter (y) of the transformation. A variation of
Swz leads to the right side of Eq. (1).

We can express (5) in terms of the field 1, using 4, =A4; =0 and A = k,L:

S 3 hfd3x fdrdx®1 a A C (6)
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We can also find which conditions must be satisfied by S, and just what the dimen-
sionless parameter  is. First, a variation of S}, with respect to 1 should not depend on
the method used to expand the physical space. This condition is met if C, is indepen-
dent of T (the dynamic invariance of the parameter C, was proved in Ref. 12). If we
choose « = 1/3, we find S, to be that increment in the Lebedev-Khalatnikov action®
which leads to the right side of Eq. (3), since in this case we have

»
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Second, the change in S}, for any choice of the 5-space must be a multiple of
2m#i. Since the difference between the two values of the action, S §}, — S %, for differ-
ent choices of the 5-space, with the same boundary, is an integral over a closed space,
while the integral of I'[ (31/91),(d1/9x *) ] over a closed surface is a topological invar-
iant and is a multiple of 477, we find that this second requirement holds if 3xN, is an
integer, where N, = § d °xC,. With « = 1/3, the quantity N, must be an integer. That
this choice of « is correct is verified by the circumstance that in this case the internal
angular momentum is quantized correctly, i.e., it is a multiple of #/2:

JdPx L+ L
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where N is the number of particles.

The action S, in (5) and (6) differs from both the Wess-Zumino action intro-
duced for *He by Valachandran® and the action S, derived in Ref. 14, which depends
on the momentum k and which vanishes when a summation is taken over momentum.
The action Sy, in (5) and (6) can also be written at a semiclassical level, where the
dynamic variables are the particle distribution function »(k,r) and the momentum-
dependent phase of the order parameter, ® (k,r), which has a vortex singularity in k-
space—a boojum—at'® + k1. Because of the boojums, the orbital dynamics has
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much in common with the dynamics of vortices. If there are no boojums on the Fermi
surface, as in the case of *He-B, the action would be written in terms of # and ® as
§=58."+S5,, where the kinetic energy is S} = (1/2) 2, fd 3xdin®, and S, is the
potential energy, which depends on gradients of ®. In order to exiend the dynamic
equations for # and & to the case of a liquid with boojums, we introduce the following
action functional in an expanded space:
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In *He-4, the difference between the mixed derivatives of the phase ® is nonzero at the
points of boojums,’> where it is 27(ke1)*5(k, )1[(d1/3t),(1/3x ) ]. As a result, after
a summation over k, expression (9b) becomes {6) with « = 1/3.

Expression (9) can also be applied to ordinary vortices in r-space, by taking ® in
the form ® (k) + 2¢(r,t), where @ (r,t) varies by 27m when the vortex is circumvent-
ed. We then have Sy, = 27#imp(0) § dtdx *do(da/dt)-[(da/dx),(da/do)], where
a(o) is a displacement of the vortex line, which depends on the coordinate (o) along
the line, while p(0) is the density on the vortex line. A variation of S, with respect to
a leads to an additional Magnus force acting on the vortex:
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This force must be subtracted from the ordinary Magnus force, which contains the
density far from the vortex, p( ). The effective Magnus force thus contains the
difference p( ) — p(0). An analogous Magnus force'® for linear objects in a ferro-
magnet (cylindrical domains and magnetic vortices) can also be found from a Wess-
Zumino action, which would be written in the case of a ferromagnetic as S%,,
= { d *xdtdx *Mm-[ (3m/3dt),(dm/Ix )], where m is the direction of the magnetic
moment M = Mm. Transforming to the coordinate a of the linear object in accordance
with m = m(r — a(t,0,x °)), and varying with respect to a, we find the Magnus force
Ms{[(da/d0),(da/dt) ], where s is the area swept across a unit sphere by the vector m
in the core of the linear object. For a cylindrical domain we would have s = 4, and
for an axisymmetric magnetic vortex we would have s =27 (m, (o0 ) — m,(0)). We
do not rule out the possiblity that in vortices of superfluid *He the Magnus force
depends on the topology of the core; if it does, we would have an explanation for the
jump observed in the critical velocity upon a vortex transition.!”

In *He-A4, the Magnus force acting on vortices in k-space, i.e., on boojums at the
points 4 kL, is given by the left side of Eq. (4b). The parameter C,, is therefore the
density in the core of the vortex singularity, where there is no superfluid gap; corre-
spondingly, we have the value k }/37 °. The quantization of the internal angular mo-
mentum in (8) corresponds to a quantization of the motion of the vortex: As a vortex
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ring moves between its creation and disappearance, it sweeps out a closed surface
which encloses an integer number of particles'®
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