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A new, axially asymmetric state of a broken-parity vortex in *He-B has been found.
Atlow pressures, this state has an energy lower than that of an axisymmetric state.
Only a first-order phase transition can occur between these two states. The
properties of a rotating liquid, which are associated with the breaking of axial
symmetry in a vortex, are discussed.

Since the discovery of a first-order phase transition within the core of a quantized
singular vortex in the quasi-isotropic B phase of superfluid *He (Ref. 1), involving an
abrupt change in the magnetic moment concentrated in the core,” there has been active
theoretical research on the structure of the core. Near the temperature (7.) of the
superfluid transition, that axisymmetric vortex which has the lowest energy is the so-
called v-vortex,? in whose core spatial parity P is broken but the combined parity PTU,
is conserved; here T is time reversal, and U, is the revolution of the vortex line.
Because of parity breaking, the v-vortex has a spontaneous electric polarization and a
spontaneous spin current, which are concentrated in the core and which are directed
along the axis of the vortex. Superfluidity is not disrupted in the core of a v-vortex:
The core consists primarily of 4 phase, whose orbital angular momentum 1 is directed
along the axis, and also of 3 phase, with ferromagnetically ordered spins of Cooper
pairs.

In the 4 phase, however, the energetically preferred orientation of the orbital
angular momentum 1 is in the plane of the flow. This circumstance has the conse-
quence, in particular, that quantized vortices in *He-A, either singular or nonsingular,
do not have axial symmetry.* We are thus led to ask whether axial symmetry is broken
in a v-vortex. To answer this question, we have studied the stability of an axially
symmetric state of a v-vortex in the Ginzburg-Landau region with respect to perturba-
tions that break axial symmetry.

The order parameter in superfluid *He, whose Cooper pairs are in the S =1,
L =1 state, contains nine amplitudes a,,, which correspond to states with different
projections (¢ and v) of the spin S and of the orbital angular momentum L. In a
vortex, a,, depends on the distance () from the vortex axis and on the azimuthal
angle ¢ and can be written in the following general form:
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The term with Q = 0 describes the axisymmetric state of a vortex in *He-B with a
single quantum of circulation; the other terms are perturbations that break axial sym-
metry. The perturbations with different values of |Q | do not mix in the linear approxi-
mation.

The most important perturbations are those with |Q | =1 and |Q | = 2. An insta-
bility with respect to perturbations with |Q | = 1 gives rise, through the nonlinearity, to
the appearance of all other harmonics; i.e., the symmetry is broken with respect to all
rotations around the vortex axis. In this case, a special direction arises in the plane
perpendicular to the axis of the vortex; this direction is characterized by the umit
vector b, which changes sign under time reversal (T’b= —b). This event corre-
sponds precisely to a deviation of the orbital angular momentum 1 from the direction
of the vortex axis. An instability with |Q | = 2 generates only even harmonics of Q and
corresponds to a conservation of the symmetry C,: a rotation of 7 around the vortex
axis. In this case the vector b becomes a two-sided director, and the orbital angular
momentum does not deviate from the axis.
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FIG. 1. Components of the order parameter in
a v-vortex with broken axial symmetry versus
the distance from the vortex axis (£ is the co-
herence length). The harmonics C[ corre-
spond to the axisymmetric part of the order
parameter. The notation for the harmonics
CL¥? and C{;? is the same as for C[). At
the vortex axis, the components Cy,, C,_,
C. o C_g are nonzero. The approximate equa-
lity C,o=C_, holds, indicating that the so-
called axially planar phase, first described by
Mermin and Ster,” exists at the axis.
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We have found that in the approximation of so-called weak coupling, which
corresponds to low pressures, the axisymmetric state of a v-vortex is linearly stable
with respect to small perturbations with both |Q | =1 and |Q | = 2. However, large-
amplitude perturbations with |Q | = 2 (but not with |Q | = 1) lower the energy of the
v-vortex. Figure 1 shows the result of a minimization of the Ginzburg-Landau energy
functional in the class of functions with @ =0, + 2, — 2. At low pressures, the axial
symmetry is thus broken in the vortex, so that we are left with only the discrete
symmetry elements C, (for even Q) and PTU, (C,, = C}%, ). Whether this symmetry
is also broken will be shown by future research.

The absence of an instability in the small means that the axial symmetry can be
broken only by a first-order phase transition. Accordingly, if it turns out that the axial
symmetry is not broken for vortices at high pressures, we would have an explanation
of the observed first-order phase transition. This possibility is indicated by the results
of a numerical analysis carried out by Thuneberg.” The breaking of axial symmetry in
a v-vortex, while retaining all the former properties of the v-vortex which are associat-
ed with parity breaking, gives rise to some new properties. First, an additional Gold-
stone mode arises: oscillations of the vector b which propagate along the vortex axis.
Second, there is a modification of the interaction of vortices with the volume order
parameter, which is specified by the rotation matrix R,; (n, 8) that couples the spin
and orbital subsystems in the B phase. The rotation angle 8 is fixed by the spin-orbit
(dipole) interaction cosf, = — 1/4, and the rotation axis n is oriented by the magnet-
ic field H and the vortices. The orientation of n with respect to H is measured in NMR
experiments. The total orientational energy, found after an average is taken over vorti-
ces in a volume element, has the general form

2 A A
F=a { —(nH)* + gHznuch?z*? + Az (WD) (hb) + Ay (hb)? ]
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Here Q2 is a unit vector along the rotation axis (i.e., along the axis of the vortices), so

that we have bL{). The first term in (2) describes the interaction of n with the magnet-
ic field due to the slight magnetic anisotropy in the volume. The second term describes
the interaction (quadratic in the field) of the order parameter with vortices which
arises from the pronounced magnetic anisotropy near a core. We are assuming that
because of this interaction, the vectors b of the individual vortices should be oriented
identically. In the case of C, symmetry, we have A, = 0, and in the axisymmetric case
we also have 4,, = 0. The third term describes the gyromagnetic energy associated
with the existence of a magnetic moment M, = — (4/5)R; (K,ﬁ,- + «,b,), which is
concentrated in the vortex cores. We have «, = 0 if there is C, symmetry.

Third, solitons can exist at a vortex. The soliton is a part of a vortex line in which
the vector b changes by 27 (or by =, if there is C, symmetry). Away from a soliton,
the vector b is fixed by the interaction with the order parameter in the volume.
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All five of the parameters A and x can be found from NMR experiments. In
particular, whether C, symmetry is broken can be determined by applying a field
H[[ﬁ In this case the equilibrium angle () between n and H is nonzero only if the
parameter 4,, is nonzero:

2
s = : (3)
10 (1 =Ag +22)?

This equality is found by minimizing (2) under the constraints 4,,€1, 4,; — A, < 1.
New measurements and also a reexamination of the old data on the basis of (2) should
provide the key to the identification of the phase transition in a vortex, since it will
thus become possible to determine whether there is a breaking of axial symmetry, and
the nature of the breaking, in each of the two vortex states that are observed.

This paper is a result of joint studies carried out within the framework of the
ROTA Soviet-Finnish Scientific Project.
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