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A parametric resonance in an external rf field can be used to detect topological
excitations in planar two-dimensional (2d ) magnetic materials.

Berezinskii' has shown that vortex excitations in the low-temperature phase of a
planar 2d magnetic material combine into bound states—vortex pairs—which are in a
thermal equilibrium. At a critical temperature 7', calculated by Kosterlitz and Thou-
less,? the molecules dissociate and a vortex plasma forms. The statistical data on
vortex pairs have been studied theoretically in detail. Unfortunately, experimental
verification of the theory has encountered some difficulties: a weak anisotropy and the
distortion of the two-dimensional picture by the three-dimensional interactions in
layered systems.

In the present letter we study the dynamics of vortex pairs in 24 ferromagnets
and, in particular, the parametric resonance in an rf field. The interactions mentioned
above are unimportant in the study of the dynamics.

The equations of motion for single moving vortices were derived by Huber® and
Nikiforov and Sonin.* They studied a weak, easy-plane anisotropy, a physically inter-
esting case in which the spins at the vortex core emerge from the plane. A vortex is
therefore characterized not only by the circulation ¢ but also by the number ¢, which
has a value of + 1 or — 1 and which indicates the spin direction in the vortex core.
Instead of the motion of a single vortex, it is more appropriate to consider the motion
of a system of vortices whose total circulation @ = 2, gq; is equal to zero. The equation
of motion for such a system of vortices at low velocities v, is

G, x v;+ Dy, =k§i F,.+F. (1)

Let us explain the notation. The gyration vector
A
G =2nqoz (2)

is directed along the normal to the plane; the unit vector in this direction is denoted by
Z; D is the dissipation coefficient

D= aglnR/l . 3)

Here a, is a dimensionless constant, R is the spacing between the vortices, and / is the
anisotropy length which is equal to the size of the vortex core. The force at which the
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i-th vortex interacts with the k-th vortex is determined by the relative position of the
vortex centers which are characterized by the vectors R; and R, :

R, - R,

F, = ——-%_ 2nglg.q, ; g = so/h 4
k 2 k> ’
1 I Rl . Rk ‘ 1
where g is the gyromagnetic factor, s, is the area of a unit cell, and J is the exchange
constant (saturation magnetization is assumed to be unity). The external force F; is
determined by the external magnetic fields. Since we are considering only the uniform
fields H(¢), we can write

F, =— gHOM/OR,. (5)

Let us consider an isolated vortex pair with Q = 0. Disregarding the dissipation in
the absence of external forces, we can write the equation o,v, — o,v, = 0, from which
we see that there are two types of vortex pairs. If o, = 0, a vortex pair will move
collectively in the direction perpendicular to the line connecting their centers at a
velocity v = ¥/2R, where ¥ = 2gJ. The second type of vortex pairs (0, = — 0,) rotate
around a fixed common center at an angular velocity » = /R °.

Dissipation causes a vortex pair to shrink in size (R ) in proportion to
R* =R} —2DGy t(G*+ D*)"!. (6)

The energy and total magnetic moment of a vortex pair depend solely on R if the
discrete nature of the lattice is disregarded. This dependence is obvious in the case of
exchange interaction. It also applies, however, in the case of a uniaxial anisotropy in a
plane, since the energy and total magnetic moment are invariant with respect to the
rotation of the plane without a spin flip. The symmetry is disrupted by only the dipole
interaction, which accounts for a slight dependence of the energy and total magnetic
moment of a vortex pair on the angle of rotation of the vortex pair (¢ ) with respect to
the preferential direction of magnetization, assumed to be the x axis. The dependence
of the magnetic moment on R and ¢, for example, can be written as follows:

M, = Mo(R) + M((R)cos2¢ + ... ; My = M{(R)sin2¢ + ... . (7)

The value of M, can be calculated by multiplying the transverse component of the true
magnetic field induced by all the spins of the system at a given point on the plane by
the magnetic-moment gradient, calculated at the same point for a single-vortex static
solution, and then integrating over the entire plane. As a result, we find

§
M = 2 -, (8)

where s ~J /f3 is the area of a vortex core.
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Because of the asymmetry of the magnetic moment, a vortex pair can be excited
parametrically by an alternating external field H{¢ ). For definiteness, we assume that H
is directed along the y axis: H, = H,coswt. Using (2), (4), (5), and (7), we can reduce
equation of motion (1) to the form

-~y + Dx =~ yx/R? — izM1y3/R4 ,
x + Dy =— yy/R* —hM,x3/R*

)

where b = hycosw,t (hy = g1tz Hy/7s,) is the reduced magnetic field, and D = D /2.
Since x> and y* contain the first and third harmonics, it is reasonable to expect a
resonance to occur at the external-field frequency w,, which is approximately equal to
2&(R). In the neighborhood of the resonance, we will use for Egs. (9) a method for
averaging over the fast variable, @ = fw(R )dt. As the slow variables we use R and ¢,
which are related to the x and y coordinates by

x = Rcos(® + a), y = Rsin(® + a).
In a first approximation for the small parameter § = M, A,/y, Eqs. (9) reduce to the
following equation for a slow, single variable ¥ = f2w(R ) — wy)dt + 2a:

Al'p.+cos1,//—B=0, (10)

where 4 = 4/(w26), and B = 2D /8.

Equation (10) is consistent with a mechanical analogy: This is an equation of
motion for a particle with a mass 4 in an external field with a periodic component and
a constant component. The potential of this field

V(y) =— By + siny (11)

is plotted in Fig. 1. The bound states in potential (11), which appear when B<1,
cerrespond to quasi-steady regimes of the rotating vortex pairs. The trapping of vortex
pairs begins at the cutoff field, H, = pu; YiBsyus/s3/?) ™" (so0/50 0y )!* D /IR /1,
where w,,,, = ¥/1?. The spacing AR between the vortices of a vortex pair trapped by
the external field is

AR = w ' Ry/24V4A7 1, (12)

where AV is the potential-barrier height (Fig. 1). Near the cutoff field, we have

N/}

AV = (1 - HJH)Y?.

The resonant absorption is determined by the density of the vortex pairs that are
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FIG. 1.

ay

trapped by the external field, N, = 1/2 W(R )RARAy. Here W(R)= W,R ~*T,/Tis
the Boltzmann weight of a vortex pair, the spacing AR between the vortices of a vortex
pair is given by Eq. (12), and A¢ is the interval of the phases corresponding to the
captured states (Fig. 1). Near the cutoff field, we have A¢~(1 — H./H )2 Each
trapped vortex pair absorbs a power

6Q =

The total power of the rf field absorbed per unit area is

2T /T 574 -1/2
Q(wo) = N, SQN/—,——U L 03/2<1_’i) (‘L) _
thsg / Jw H H,

It should be pointed out that no parametric spin-wave resonance will occur if the
external field is oriented relative to the magnetizing field in the manner considered
above. In principle, a resonance can occur not only at a doubled frequency but also at
a quadrupled frequency [see Egs. (9)].

Finally, let us numerically estimate the quantities that characterize a parametric
resonance. A useful object for such an estimate is a layered magnetic material
(C,H,NH,;),CuCl,, whose static properties were studied in detail by de Jongh er al.®
The parameters that describe this resonance are the resonant frequency

J So 9
wo < w =g ?(v0=w0/2n’~10 Hz)

max

the cutoff field
H, ~ 103D (s0/s)? Qe

and the power absorbed per cm®

5/4
r/Tr

o~ 101253/2<1 - %) (wo/200 ) e () W
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