Defects and an unusual superconductivity
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If the superconducting gap in a pure material has zeros on an entire line along the
Fermi surface, the state density is finite at € = 0, beginning with the lowest defect
concentrations. The splitting of the superconducting transition by impurities,

U, _, Th, Be,, is discussed.

Arguments in favor of a nontrivial nature of the superconductivity in heavy-
fermion systems are based on the power-law behavior of several measured properties
at low temperatures (the specific heat,’ the ultrasonic absorption coefficient,” and
NMR line widths,> among others). All the superconducting classes that are possible
for these systems were listed in Refs. 4 and 5. It turns out that in the triplet class
(S = 1) the superconducting gap can vanish only at isolated points on the Fermi sur-
face, while in the singlet case (S = 0) it can vanish on entire lines along the Fermi
surface. Depending on the particular features of the gap, the specific heat (for example)
would vary in proportion to T2 and T2, respectively (T<T.,).

Let us examine the stability of these results with respect to impurities. We first
assume S = 0; then the order parameter® is a scalar, (k). To determine the state
density for excitations, we use a generalization of the expression in Ref. 6 for the
entropy:
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The functions &k,e) and 9(k,e) are the result of an analytic continuation from the
upper thermodynamic frequency axis (€ = i€, ) of the solution of the equations
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Here (...),, = f..dS,./§dS\.

Equations (2) determine the self-energy parts of the Green’s functions averaged
over impurities. For a uniform impurity distribution, the kernel 7~ '(k,k’) has the
initial crystal symmetry. The symmetry of #(k,e) is thus the same as ¥(k); in particular,
J(k.€) has zeros at the same locus of points.

For simplicity, we assume an isotropic impurity [(r~'(k,k’)=7""]. The second of
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Egs. (2) gives us ¢ = ¢, while the first becomes
1€ :
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If ¢(k) vanishes on lines, the integral here has a logarithmic singularity,
1 2A
E(l— —ln——f)~)=e B)

[T—0,|€|,|€| €4, Where 4, is the scale dimension of |¢(k)|]. The value e =0 corre-
sponds to

gb = leo exp( - 2TA0) . (4)

Expanding (3) in the neighborhood of (4), we find from (1) a finite state density in a
narrow region e~0:

vg /vy = 417A%exp (—214,). (5)
The general form of the kernel 7 (k,k’) is
Pk K) = T o760 ), (6)
[APY

where the operator symbol incorporates the spin variables, the index 7 specifies all the
eigenvalues 77!, 6* are the corresponding eigenfunctions, which always belong to
one of five representations of the cubic group, and A specifies the basis functions of the
representation if it is degenerate. The sign of 7! is, in general, arbitrary, except for
the principal value, 75 ! > 0, which belongs to the identity representation. We now see
that (4) and (5) are also valid in the general case, since the corrections to #(k,e) do not
contain logarithmic terms. Finally, if the zeros of the gap correspond to isolated points
on the Fermi surface, a perturbation theory will be valid at low concentrations. A
“gap-free superconductivity” is possible only at a finite defect concentration, 74,~ 1.

In the case of a nontrivial superconductivity, impurities will lower T,. It was
found in Ref. 7, however, that the superconducting transition in U; _, Th,Be,; also
splits in two. An explanation for this effect® was proposed on the basis of the sugges-
tion that the superconductivity in UBe; is anisotropic and is characterized by a vector
whose direction is pinned by defects in a random way. The second transition (at
T., <T,. ) was identified with an orientational transition. The estimates in Ref. 8,
however, contain some parameters which were literally small. In this connection, it
was mentioned in Ref. 8 that in the fourth-degree terms in the Ginzburg-Landau
functional

61Iﬁ’l‘“rﬁzIﬁ’|2+63(lﬁx|4+iﬁ;l4+lﬁzi4) (7)

(%; are the coefficients in the expansion of the order parameter in the basis functions of
the three-dimensional representations of the O group) the relations between the coeffi-
cients B; depend on the impurities. The derivations of the coefficients 3; in the weak-
coupling model, which is completely analogous to that of Ref. 9, shows that all the 8,
vary over a rather broad range, depending on the assumptions regarding the anisotro-
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py of the basis functions and the signs of 7,7 ! [several terms corresponding to different
representations must be retained in (6)]. Of these results we will mention two: As the
impurity concentration x is increased, the superconducting transition may become a
first-order transition; i.e., (7) may lose its positive definite form. Second, in the weak-
coupling model and for x = 0 we have 8, =18, >0 for § = 0, and, according to Ref.
5, the superconducting phase near 7, corresponds to a symmetry D (E) or D;(E). In
other words, it has a magnetic moment. For triplet pairing, S = 1, we have 3, <0 (the
latter result was also derived in Ref. 10). Correspondingly, there are classes® D; X R,
D,(C;)X R, D,(C))XR, DI D,)XR, in which the order parameter is real.

Returning to the possibility of describing the splitting of the transition in
U, _, Th,Be,; by this approach (we are assuming that the second transition is also a
superconducting transition), we are confronted by the circumstances that these classes
exhaust all the extrema of the Ginzburg-Landau functional® (7). Continuous transi-
tions between them are not possible within the framework of a single representation
(this also applies to two-dimensional representations). Measurements of NMR line
widths® indicate that the second transition is continuous.

The splitting of the temperature of the superconducting transition can be under-
stood easily by assuming that there is a preferred orientation of the impurities and that
this orientation lowers the symmetry of the cube. That this is indeed the case in the
UBe,; system was brought to our attention by N. E. Alekseevskii, whom the authors
thank. We also thank G. E. Volovik and D. E. Khmel’nitskii for many useful discus-
sions.
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