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Supersolidity of glasses
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Supersolidity of glasses is explained as a property of an unusual state of condensed matter. This state is
essentially different from both normal and superfluid solid states. The mechanism of the phenomenon is the

transfer of mass by tunneling two level systems.
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1. Introduction. It was shown theoretically [1-3]
that owing to the large probability of quantum tunneling
of atoms, solid helium may be superfluid. All attempts
to observe the superflow experimentally were unsuccess-
ful (see [4] and [5]).

Kim and Chan [6] observed the reduction of solid
4He rotational inertia below 0.2K in the torsional oscil-
lator experiments and interpreted it as the superfluidity
of the solid. Further experiments (see [7] and references
therein) show that the superfluid fraction observed for
highly disordered (glassy) samples is remarkably large,
exceeding 20%. This fraction seems to be absent in ideal
helium crystals.

In 1972 it was shown [8, 9] that the quantum tunnel-
ing of the atoms explains some low temperature proper-
ties (thermal, electromagnetic, and acoustic) of glasses.
The key point is the presence of the so-called tunneling
two level systems (TLS) in the solid. A TLS can be
understood as an atom, or a group of atoms, which can
tunnel between two localized states characterized by a
small energy difference.

In this paper we show that owing to the presence
of coherent TLS’s, quantum glasses manifest peculiar
properties which are essentially different from those of
normal and superfluid solids. Precisely these peculiar
properties are observed experimentally (both [4, 5] and
[6, 7]). At present the terms “supersolid” and “super-
solidity” are used simply as synonyms for “superfluid
solid” and “superfluidity of solids” respectively (see [10]
for a review). We propose to use the term “supersolid-
ity” to refer to the above mentioned properties of quan-
tum glasses.

A normal solid is characterized by a single velocity
of macroscopic motion: the solid bulk velocity v. The
momentum density is pv, where p is the mass density.
The general motion of a superfluid solid is characterized
(see [1]) by two mutually independent velocities: that
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of the solid bulk and the superfluid one. The supersolid
(in our sense of the word) is characterized by a single
velocity v of the solid bulk, but under certain conditions
(see below) the momentum density is (p — ps)v, where
ps/p is the supersolid fraction. This is exactly what we
need to explain both the reduction of rotational inertia
[6, 7] and the absence of a superflow [4, 5]. We calculate
ps in terms of TLS parameters. The supersolid fraction,
being proportional to the squared TLS tunneling ampli-
tude, can be considerable for highly disordered solid *He
and other quantum solids (hydrogen).

Our results are supported in recent experiment by
Grigorev et al. [11]. They measured the temperature
dependence of pressure in solid *He grown by the cap-
illary blocking technique. At temperatures below 0.3K
(where the supersolidity was observed) they found the
glassy o< T? contribution to pressure. This is exactly
what one expects from the TLS. On the other hand,
the measurements of the melting pressure in perfect *He
samples showed no deviations from oc T* law [12].

2. TLS in moving glasses. The Hamiltonian Hy
of a given TLS in the frame of reference in which the
solid bulk velocity v is zero, can be written as

Hy = —eo3 + Jo.

Here Fe (¢ > 0) are energies of two localized states, J
is the tunneling amplitude, and o; (i = 1,2,3) are the
Pauli matrices.

Let us suppose that the tunneling of the TLS is ac-
companied by displacement of a mass m by a vector
a. The coordinates ri» of the center of gravity of the
TLS before and after the tunneling can be written as
ri2 = Fa/2. The operator form of the last equality is
r = —o3a/2. The operator of velocity is determined by
the commutator:

.1 Ja
r= E[HO,I'] = —?0'2.
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The TLS momentum in the frame in which v =0, is

mdJa

h

In an arbitrary frame of reference a description of the
TLS by means of a discrete coordinate is impossible.
But we can use Galilean transformations to find the TLS
Hamiltonian and momentum in the frame in which v is
finite. We obtain

pP=mr=— o2.

Hy — Hy + pv +mv?/2,
P—p+my,

respectively. The last terms of both expressions must be
included to the total kinetic energy and momentum of
the solid bulk. Therefore, the contributions of the TLS
tunneling to the energy and momentum of entire system
are

H = Hy + pv 1

and p, respectively. These two operators represent the
energy and momentum of the tunneling TLS in the solid
moving with velocity v. Note that the operators p and
H do not commute with each other.

The eigenvalues of the Hamiltonian H are E; > =
= FE, where E = (52+A2)1/2, A= J(1+u2)1/2,
and u = (m/h)(av). According to the general result of
quantum mechanics ([13], §11) the mean values of mo-
mentum (p)1,2 in the stationary states 1 and 2 are

(o= (00 - OB
P12 =\ Bv 1’2_ ov '

2,02
(P12 = :th—Ea(av).

We have

In the case of nonzero v, the TLS has nonzero mean val-
ues of momenta in both stationary states. Note that in
the TLS ground state, the projection of the momentum
(p)1 on the direction of velocity v is negative. This is
the mechanism of supersolidity. The Hamiltonian H is
identical to that of spin 1/2 in magnetic field. The sign
of (p)1 corresponds to Pauli paramagnetism.

3. Supersolidity. The equilibrium density matrix
of the TLS (which is an almost closed system) in a uni-
formly rotating frame is

f'—H/T

where f’ and H' are the free energy and Hamiltonian in
this frame. The latter is determined by the expression

H' =H —wM = Hy + pv — wM,
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where w is the angular velocity, M = R X p is the TLS
angular momentum, v = w X R, and R is the TLS co-
ordinate with respect to the rotation axis. We obtain
H' = Hy. This means that a uniformly rotating super-
solid behaves like a normal solid.

However, suppose that the solid bulk velocity de-
pends on time v = v(t) and is “switched on” adiabati-
cally. This means (see [14], §11) that the switching time
is much longer than the relaxation time in the solid but
much shorter than the time during which the solid can
be regarded as thermally insulated. The second of these
two characteristic times is very long due to the Kapitza
thermal resistance.

According to the general result of statistical mechan-
ics ([14], §11 and §15) we have

0= ()= (%),

f=-Tlog (Tr e_H/T) (2)

where

is the TLS free energy and H is determined by (1) with
v =v(t).
The free energy (2) can be written as

f=-Tlog (e*El/T + esz/T) .

Here Ey > = FE are the eigenvalues of the Hamiltonian
H. The mean value of the TLS momentum is

w =" (5) -

Simple calculation gives

of _ J?u E
(%)T = —T tanhf

or

<pl) = _mgl‘:) Vg,

where

. Jm\?  tanh(E/T)
mgk) = (T) @iy ——

Let Nde (N = const) is the number of TLS’s per unit
volume of the solid and per interval of the energy half-
difference de near some & which is much smaller than
the characteristic height U of the energy barriers in the
solid. The total momentum density j is

Ji = pvi — P,(Z)vk,
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