Poisson brackets and continuous dynamics of the vortex
lattice in rotating He Il

G. E. Volovik and V. S. Dotsenko, Jr.
L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences

(Submitted 2 April 1979)
Pis’ma Zh. Eksp. Teor. Fiz. 29, No. 10, 630-633 (20 May 1979)

We determined the Poisson brackets for the macroscopic variables, which
describe the states of He Il in a rotating vessel. The hydrodynamics equations,
which include the equations of the elasticity theory for the lattice of vortices,
were obtained from the energy functional with the help of these brackets. The
vibrational modes, including the Tkachenko waves, were also determined.

PACS numbers: 67.40.Hf

A sufficiently fast rotation of He II produces in it a lattice of quantized vortices
(the circulation quantum x = 277%/m where m is the mass of the He* atom), which on
the average imitates the rigid-body rotation of the superfluid component of He II. The
phenomenological theory of the vortex motion in a rotating He II, in which each
volume element contains many vortices and the superfluid velocity v*® is equal to the
average value of the velocity fields of the individual vortices, was formulated by Bekar-
evich and Khalatnikov.""! This theory does not contain the additional mode associated
with the vibrations of the lattice of the vortices,”> which was determined later from
microscopic calculations and which arises from the violation of translational symme-
try in the presence of discrete vortices. In the limit k<—0 when the lattice of the
vortices is converted to a system with a continuously distributed vorticity, this mode
changes to regular inertial vibrations of the classical rotating liquid**'; therefore, it is
obtained from the theory only in this limiting case.'!’ Our aim is to include the degrees
of freedom associated with the lattice vibrations into the general theory of rotating He
II. We limit ourselves to the case 7’=0. A generalization to nonzero temperatures
with allowance for dissipation will be published later. We use the method of Poisson
brackets developed in Ref. 5. To obtain by this method the macroscopic dynamics of
any condensed medium, we must know the energy functional of the system, which is
expressed in terms of the hydrodynamic variables describing the state of the system
and the Poisson brackets for these variables which are universal in nature.

In the rotating He II these variables are the density of the mass p, the velocity v°,
and the variables describing displacement of vortices in the lattice. In the continual
description the nonequilibrium state of the vortices in a two-dimensional lattice can be
determined by two functions X, and X,, which are constant on the vortex line, rather
than by three functions which determine the position of a lattice point in a three-
dimensional crystal. It follows from the definition of these functions that
VX” (u = 1,2) is perpendicular to the vortex line, i.e., there is a bond between the
components of the velocity and X, :

rot VSVX’L =0. e))
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If the displacements relative to the equilibrium state are small, then
Xl(l’) =% =:U,, Xz(r) =y —"u'y 4 (2)

where » = (x,y,2) is the Cartesian coordinate system with the z-axis directed along the
rotational axis and u =, + yu, is a small transverse displacement of the vortices.
The Hamiltonian of the rotating He II is expressed in terms of these variables as
follows:

H= [dre(p, v —[Q,c), g, -8%) &

where {2 is the angular velocity of the vessel, g, is the metric tensor:

axy axp

ll=l,2 axi axk

’

ik =

and g5 is its equilibrium value. The difference g, — g5 is the deformation of the
lattice of vortices compare with the standard theory of elasticity'®).
In case of a small deformation
du; du
P O E 2N + .
ik ~ 8k ( axk EFR >

i

the expansion of the energy with respect to the displacements has the form:

1
2
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The moduli of elasticity K, K,, and K;, which are of the order of magnitude of x{2,
must be determined from the microscopic analysis.

p(Vs _;[a, r])2 +'.€°(p) ":‘%:' P[ai r]z

The Poisson brackets for the variables v and X, can be obtained by examining
the Poisson brackets for the coordinates of an isolated vortex, which were determined
in Ref. 7. If we introduce the variable X, along the vortex line, then these Poisson

brackets for the coordinates of the A'th vortex x,(X;,N) have the form

{ ] 0xy ) 9% 4 -2
x; (XB'N)’ x]-(X;,N')}:_:—eijk__. . ' SNN’S(Xs —'X;) .
PK 6X3 3X3

&)

A transition to the continual limit is a transition from a discrete variable N associated
with a vortex to continuous Lagrangian variables X, and X,, which are rigidly con-
nected with the vortex line in the system of continuously distributed vortices. In this
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case the Kronecker symbol 8y,  is converted with a certain coefficient to
(X, — X )6(X, — X ). Thus, we can go over from a Lagrangian description to an
Eulerian description, i.e., from x;(X;,X,,X;) to X, (r). As a result, we obtain the fol-
lowing universal (i.e., independent of the Hamitonian) Poisson bracket:

([T X, VX, Jrotv®)
LX,(6), Xy(e )} = - 5(r <), ©
p(rotv®)?

The other universal Poisson brackets can be obtained analogously:

{X(r),v’(r')l=--1— TX8(t -1, @)
" P [ ‘
(rotv®)
{oj(r), v )} =—eyy, ' s(r - ). ®
P

Moreover, we have another nonzero Poisson bracket, which follows from the fact that
p/m is the density of the gradient transformation operator under whose action v° is
transformed according to the law v"—v' + fi/mV¢:

fp(t), v(?)}=y5(t -1 ©)

We can see that Eqs. (6)-(9) satisfy the Jacobian identities when condition (1) is
satisfied. The total set of equations for the hydrodynamics of rotating He II follows
from Egs. (6)+(9) and the Hamiltonian (3). To calculate the natural modes of rotating
He II, we write these equations in linearized form and assume that the displacements u
and the velocity of the rotating coordinate system ¥ = v° — [(},r] are small:

p=tH, pb =—pF ¥, (10)
—~ ~ -~ az 62 2
ve ='{H, vil =-2[Q, Vs]+:K1 — + —Yu+kK ._.a_u
- de
+K ﬁ(au) "V’ o, (11)
2
v dp

i . 170, 9> 9?2
u={H, ul =v ~z(2v*) +—26 z,Kl( -—>u

—5;2+ dy?
3? L
+ Kstu + Ky ( v,u)] . (12)
2z
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Solving these equations, we find two modes with the spectrum:

1 1 1
wf'z =r—2(c2q2 +.402) + (—4 (czq2 +4Q7?)?2 _:4920205 —chzq:.-)é.
(13)
Here c is the velocity of sound
2
( 2 _ _a_‘_n_)
¢t =p 2
dp

Expression (13) is valid if the wavelength exceeds the average distance between the
vortices ~V/«/{2, which must be larger than the size of the vortex core ~«/c, i.e.,

. ¢
g<<J— << — (14)

K K
Because of these conditions, the terms containing K, and K, give small spectrum
corrections and hence can be dropped. At K, = 0 Eq. (13) gives the standard modes in
the classical rotating liquid: acoustic wave (at ¢>»{2 /c @, = cq) and inertial mode (at
g>2 /cw, =212 |q, |/g). The term with K, is large only in the second mode when g,
are small. At g, =0 and ¢>{2 /c we have a linear spectrum w, = K |"’q of the Tka-
chenko waves—transverse lattice yibrations.

In conclusion, we note that relations (6)—(8) are difficult to obtain by using a
purely phenomenological approach (see Refs. 5 and 8) without investigating the dyna-
mics of an isolated defect. Thus, in Ref. 5 the right-hand side of Eq. (8) is missing; as a
result, the equations for the vortex motion of He II in Ref. 5 can be used within the
limits of a strong interaction of the vortices with a normal component. Instead of X ,, a
variable, which is canonically conjugated with v°, was introduced in Ref. 8; however,
the equations, which describe the lattice dynamics, were not obtained, because the
Poisson brackets for the components of the introduced variable are not known.

We thank I.E. Dzyaloshinskii and S.V. Iordanskii for discussion of the results.

'1. Bekarevich and 1. Khalatnikov, Zh. Eksp. Teor. Fiz. 40, 920 (1961) [Sov. Phys. JETP 13, 643 (1961)];
.M. Khalatnikov, Teoriya sverkh-tekuchti (Theory of Superfluidity), Ch. 7, Moscow, 1971.

2V K. Tkachenko, Zh. Eksp. Teor. Fiz. 50, 1573 (1966) [Sov. Phys. JETP 23, 1049 (1966)].

3A.L. Fetter, Phys. Rev. 162, 143 (1967).

*“M.R. Williams and A.L. Fetter, Phys. Rev. B16, 4846 (1977); E.B. Sonin, Zh. Eksp. Teor. Fiz. 70, 1970
(1976) [Sov. Phys. JETP 43, 1027 (1976)}.

°LE. Dzyaloshinskii and G.E. Volovik, Annals of Phys., in press.

L.I. Sedov, Mekhanika sploshnoi sredy (Mechanics of Continuous Media), Vol. 2, Ch. 2, Moscow, 1970.
M. Rasetti and T. Regge, Physica 80A, 217 (1975).

V.V. Lebedev and I.M. Khalatnikov, Pis’ma Zh. Eksp. Teor. Fiz. 28, 89 (1978) [JETP Lett. 28, 83 (1978)].

579 JETP Lett., Vol. 29, No. 10, 20 May 1979 G.E. Volovik and V.S. Dotsenko, Jr. 579





