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It is shown theoretically that periodic current oscillations can be produced by a
constant electric field in a conductor with a commensurable charge-density wave
(CDW).

PACS numbers: 73.40.Gk

The conductivity of quasi-one-dimensional conductors, in which the superstruc-
ture—a charge-density wave (CDW)—is formed as a result of the Peierls transition has
been intensively investigated in recent years. It has now been established theoretically
and experimentally' ™ that a CDW, which begins to move as a result of the action of a
sufficiently large electric field E parallel to the conducting filaments, contributes to the
conductivity. Since the CDW does not move in small fields, it can be recorded because
of the interaction with the different defects or because of the commensurability effects
(if the CDW constant is a multiple of the lattice constant). The incommensurable
CDW, whose pinning is due to the interaction with the impurities, are formed in a
quasi-one-dimensional metal NbSe,, which has lately been investigated intensively.
Several curious effects have been observed in the investigation of this material. It was
shown in Refs. 4 and 5 noise generation begins to occur in the nonlinear region of the
current-voltage (I-V) characteristic of NbSe;, where the CDW begins to move, and
Monceau et al.® discovered that a step appears in the I-V characteristic as a result of
superposition of an rf field on the constant field E. These effects have been associated
with the motion of a CDW due to the influence of the field E in the random potential
of the impurities.

We shall analyze the pinning of a commensurable CDW and show that similar
transient effects will also be observed when a CDW moves in a constant field E.
However, coherent current {or voltage) oscillations, rather than noise oscillations, will
be generated because the pinning in this case is attributable to the interaction of the
CDW with the periodic crystal potential rather than with the random potential of the
impurities.

In the calculation of the response of a conductor with a commensurable CDW,
we shall generalize the kinetic equations for Green’s functions, which were derived in
Ref. 7 for the incommensurable case. It was shown in Ref. 1 that the system is de-
scribed by the » X n matrix of the Green’s functions G in the commensurable case of
order n in which the electronic spectrum satisfies the condition €, , ,Q =€, (Q is the
wave vector of the CDW), whereas the conductor with a CDW is described by the
2% 2 matrix of the Green’s functions in the incommensurable case. We shall examine
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the case in which the energies €, , ,, Q for m > 1, which were measured at the Fermi
level, are such that €, , ,, Q are »A,T (4 is the order parameter of the CDW and T is
the temperature). Since the energies €, , ,, Q generally are of the order of the conduc-
tion-band width, this assumption can be easily satisfied if 4 and the temperature T, of
the Peierls transition are small compared with the band width.

Since the energies close to the Fermi surface are important in kinetics, we need
only calculate the elements of the G, (i,k<2) matrix, which describe the states near the
Fermi energy. We can derive an equation, which contains only these elements, from
the equation for G. This equation has the form

A A € — € A+y*A*
G-16 =1, c;-1=/ P
\A*+yA €= €4 Q

wherey = A" ?/¢, , ,Q¢, ., _1,@. In the solution of the kinetic problems the poten-
tials of the external fields must be included in the Hamiltonian in G ~'. We conclude
from the relation (1) that in order to take the commensurability with 7> 2 into ac-
count, we must substitute y*4 * for 4 in the equations for Green’s functions, which
describe the incommensurable CDW.” The case # = 2, in which A4 + A * is substituted
for A because of commensurability, is a special case which will not be examined by us.

’ (1)

The commensurability changes the self-consistent condition’ for 4 — instead of
the Green’s functions G,,, it contains the sum of the G,, function and of all the
G,..m +1 functions, each of which, as can easily be shown, is equal to y*G,,. These
additions must be taken into account in the equations in Ref. 7, which describe the
linear response of the Peierls system with an incommensurable CDW. Moreover, since
|7|<1, we can substitute the equilibrium Green’s functions in the terms that take into
account the commensurability effects. As a result, we can see that the expression for
the current density is the same as that for an incommensurable CDW, and a new term,
which is proportional to |y| and which describes the pinning, appears in the self-
consistent equation, on which makes it possible to determine the connection between
the velocity of a CDW u = y /Q and the field E

1 i A
—_— X + n\yl sin(nX) =—-——-——fdegx, (2)
4 A

© 0
where A is the electron-phonon coupling constant, w,, is the frequency of a phonon
with the momentum Q.,g, = Sp(d.,), and g is the Green’s function in which the phase

factors were factored out. This function, which describes the linear response of an
incommensurable CDW, was calculated in Ref 7.

We shall consider the frequencies w<4,7, !, where 7, is the scattering time of the
longitudinal momentum of an electron. The expression for the current at such frequen-
cies has the form

i =01E+(a2ﬁ/evr2) X, (3)
where o, and o, describe the conductivities associated with the free electrons and with
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the motion of a CDW, respectively. The expressions for ¢; obtained in Ref. 7 have the
following form in the limiting cases. a) A pure conductor at high temperatures
T>As>n>7~"' (n is the characteristic width of the conduction band at right angles to
the conducting filaments),

A A7
cop(1- — 4}, 0, =0y — /22
o aN( 27 > TN T Ve

where A~1, 1/7=1/7,+ 1/27,, 7, is the time between the collisions during which
the sign of the longitudinal momentum does not change and o is the conductivity in

the normal state. b} A pure conductor at low temperatures A>T>y>7 '} 0, = gy

2\/ 71, 7T /Vexp(— A/T),0,=0y. c) A gapless state (dirty material) n>7"'>4,
o, =o0yll —a), 0, = oyla + by/2); here bga<l, wherea~A4 *r,/T,b~A*/T?at T>q
and a~A’1,/n, b~A°/7, at T<y,

After substituting in Eq. (7) the g, function from Ref. 7 the self-consistent equa-
tion has the form

. 1 .
KZ2Y + — +sin(nX)=E/EO, (4)
(L)O
where k = }a)Q\/-M]". In the same limiting cases,
AT 4AT
wE, - LT ATl
aehv 7, A %2 ln(A/q)
2A%n ]| 2AT7‘2n[ v A
b) ED = m——— (J)o == l_.__ -,
elvA %2 In T/q T
4A%n |yl
9EF - — y w, =40 n|y| /(B2ad) .
ehiav )

Equation {4) has the form of Josephson’s equation for a point contact. This equation,
together with the expression (3) for the current, determines the conductivity of the
conductor with a commensurable CDW. It follows from these equations that many
characteristic effects for Josephson junctions must be observed in this system. Specifi-
cally, it follows from Eq. (4) that if a constant field £ < E, has an effect on the CDW,
then the latter is stationary (y = 0) and the conductivity is equal to o,. The field effect
in this case reduces to the loss of equilibrium of the CDW, y = 0. If the field is higher
than the critical field E,, then the CDW and hence the current will oscillate periodical-
ly in the sample. ' We have y =~ E /E,, in the high-field limit and at E>E, and the dc
conductivity is equal to o, + o, fiw,/eVT1,E,, but the oscillation frequency of the phase
and of the variable component of the current is equal to nwyE /E, If the field E
contains a small variable E, sin w¢ in addition to the constant part, then the /-V
characteristics will reveal the presence of a step with a slope equal to that of the I-V
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FIG. 1. I-V characteristic in the absence of irradiation {dashed curve) and in its presence at a frequency w
{solid curve).

characteristic at E < E,. In contrast to the Josephson effect, the voltage at which the
step appears is related to the frequency by the relation that contains not only e and #
but also the parameters of the material. The center of the step for w»nw, is located at

E~w/nw, E, and its amplitude is equal to E,nwy,/m,,/1 + (0*»?)k*] (see Fig. 1).

The I-V characteristic in the nonlinear region depends on the conditions under
which it was measured. For example, the /-V characteristic in this region has an S-
shaped form for the specified current and xw,<1..

Equations (3) and (4) make it possible to determine the frequency dependence o{w)
of the conductivity. It has the following form in a constant field E < E,:

ok (w/wo) +i(K2a)2—ncosnX_°) E
ow) =0, +0, m X = arcsin—-.

evron (szz—ncosnxo)2 +w2/m§ E

(1]

(5)

The characteristic values of the field E,, of the frequency w,, and of the other
quantities, which depend on different parameters of the material and on the tempera-
ture, can vary from one material to another within a very broad range, since the
temperature of the Peierls transition, for example, in different materials varies in the
range of several degrees to hundreds of degrees. The numerical estimates are rather
difficult to perform for specific materials since many parameters are not known. An
approximate estimate of the frequency o, for a quasi-one-dimensional conductor TuS;,
in which a commensurable CDW with » = 4 is formed at 210 K,® shows that o, may
turn out to be a rather large value that lies in the microwave-to infrared-frequency
range. We also note that a nonlinear I-V characteristic has been observed in 7aS, in
fields of about 100 V/cm.?
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