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Spatially inhomogeneous solutions are found for the equations for spin dynamics
of the 4 phase of He?, which describe the steady-state magnetization precession

and which are converted to planar solitons due to relaxation.

PACS numbers: 67.50.Fi, 76.60.Es

The order parameter in the A phase of He® is characterized by two vectors: the
spin vector d and the orbital vector I; their relative orientation in the bulk of the li-
quid is determined by the spin-orbit interaction with the energy U=-Q% /2w (1, d)*.
Here Q 4 is the frequency of longitudinal oscillations and wy, is the Larmor frequency.
U has two energy equivalent minima, dil 1 and -d {1, because of which two types of
domains can exist. The domain boundary with different relative orientation of d and
lis the planar soliton in question. Since additional energy must be expended to form
the domain wall, the single-domain state is advantageous, but the polydomain states
must be specially prepared. It was determined experimentally that the domain walls
in the 4 phase of He® are formed as a result of relaxation of magnetization to the
equilibrium state after its large-angle deviation.' The goal of this paper is to ex-
plain theoretically this method of preparation of the soliton state.

Our explanation is based on the fact that the spatially homogeneous precession
of magnetization in the 4 phase, as shown previously,® is unstable. If we drop the
requirement of spatial homogeneity, then the steady-state precession of magnetiza-
tion in a magnetic field, which satisfies the condition wy >>£2 4 in accordance with
the results of Ref. 5 and in notations used therein, can be described by the following
set of equations:
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In the 4 phase,
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are the spin-orbit energy and the energy of inhomogeneity of the condensate, respec-
tively, which are averaged over the fast motion and 22 ¢/8w3% is the dimensionless
shift of the precession frequency from the Larmor frequency. The solutions depend-
ing on one spatial coordinate x are of interest because of the planar solitons. Equa-
tions (1)-(4), for which a x =® , =0, have a solution; ® satisfies the equation 0V/o®
=0. The dependence of angle 8 on x is described by Eq. (4), which gives

2 (1+ cos B)? (B")?
lia T T,

after integration and multiplication by g’ sin8. The prime denotes differentiation
with respect to the dimensionless coordinate £ =€x/c, where c is the velocity of spin
waves. Equation (7)is an energy integral for particle motion in the potential W(cosp).
The solutions of this equation can be expressed in terms of elliptic integrals that de-
pend on two constants { and £. The ¢ constant determines the W potential and E de-
termines the motion in the given potential. It is clear that all the solutions describe
the periodic structures. To test the stability of the solutions, it is convenient to se-
lect other constants -k =2x/, instead of { and £, where X is the spatial period of the
structure and =1/ (S, - S)dE, where the integral is taken over the period of the
structure. A direct calculation shows that the energy-density differential of the per-
iodic structure, which is described by the solution of Eq. (7), has the following form
in these variables

+ cos 2B+ +W (cosB) =E = const  (7)

2

Q
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where J =1/2a$8'dp is the mechanical action. According to the standard thermo-
dynamic arguments,® the angular precession frequency w; and the action J in equi-
librium must be constant in the entire investigated volume of He*. The requirement
that the second differential F should be positive gives rise to the following stability
conditions of the found solutions:
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These conditions turn out to be satisfied only for the energies £ which are larger than
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the largest maximum W. Such solutions correspond to a monotonic variation of the
angle § with the coordinate. By definition of the spherical coordinates, the variation
of 8 must be limited by the interval (0, n); therefore, each time § crosses the value
mm (m is an integer), we can assume that the angle o varies discontinuously by a 7.
To preserve the continuity, the third Euler angle v must vary by (-1)"*17. Asa
result, the angle ¢ =a +7 remains the same for even m and varies by 2x for odd m.
As a result of relaxation, & is converted to an angle of rotation d with respect to 1. A
variation of ® by 2 enables the domain walls to be formed. The domain walls,
which correspond to the rotation of d by 2w, are unstable; they can either vanish or
break up into two walls. What determines the selection of the option requires a more
thorough analysis which takes the dissipation into account. If, however, the explana-
tion of the formation process of solitons discussed here is accepted, then the varia-
tion of the NMR frequency shift observed experimentally® for large times can be
attributed to the breakup of domain walls.

A transition from an unstable, homogeneous precession to a stable soliton pre-
cession apparently occurs in the form of a propagation of the front which is formed
because of the initial difference in the precession frequencies at different points of
the investigated He® volume. The planes on which 8 =m are the slip planes of the
angle o, which makes it possible to determine the velocity of the front from a known
value and from the uniform precession frequency. In fact, the phase difference in
the precession, between the points 1 and 2, which builds up during the time ¢, be-
tween the points 1 and 2, which are located on the opposite sides of the front Aa
=(¢; ~§2)19% /8wy, , must form n=Aa/r slip planes of the phase, from which we
obtain

Q
Ytr 2 )\(41 ‘42)0 > (10)

81'rcoL

for the propagation velocity of the front. The period A of the structure is determined
by the quantity &. The order of magnitude of v¢ and its dependence on the tem-
perature, pressure and magnetic field are determined by the combination of 2¢/wy, .
The transition from uniform precession to soliton precession can account for the fact
that two frequencies of magnetization precession, which is deflected by a large angle,
have been observed simultaneously in the experiment.® It should be borne in mind
in a quantitative comparison with the experiment that the effect of dissipation on
the magnetization motion was not taken into account in our analysis; moreover, we
have analyzed only the initial stage of formation of solitons, which did not allow us
to determine which soliton of all the possible types of solitons’ is formed as a result
of relaxation.

We thank G. E. Volovik and V. P. Mineev for useful discussions.

. W. Gannetta, E. N. Smith, and D. M. Lee, Phys. Lett. 62A, 335 (1977).

. Kokko, M. A. Paalanen, R. C. Richardson, and Y. Takano, J. Phys. C11, L125 (1978).

. M. Gould, T. J. Bartolac, and H. M. Bozler, J. Low Temp. Phys. 39, 291 (1980).
. A. Fomin, Pis’'ma Zh. Eksp. Teor. Fiz. 30, 179 (1979) [JETP Lett. 30, 164 (1979)].
. A. Fomin, Zh. Eksp. Teor. Fiz. 78, 2392 (1980) [Sov. Phys. JETP 51, 1203 (1980)].

. D. Landau and E. M. Lifshitz, Statisticheskaya fizika (Statistical Physics), Part I, Nauka,

3083 JETP Lett, Vo!. 33, No. 6, 20 March 1981 I, A. Fomin

303



Moscow, 1976, Ch. 2.
7.K.Maki and P. Kumar, Phys. Rev. B17, 1088 (1978).

Translated by S. J. Amoretty
Edited by Robert T. Beyer





