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The relaxation of plasma oscillations in a weakly inhomogeneous
anisotropic collisionless plasma is considered. The damping of the
Langmuir waves is investigated in detail. The Landau-damping decrement
increases exponentially with time, owing to the linear growth of the
characteristic wave vector with time.

PACS numbers: 52.35.—g

The present article is devoted to a solution of the initial problem of relaxation of a
perturbation in a one-dimensionally (along the X axis) inhomogeneous plasma. The
characteristic wavelengths of the oscillations produced in the plasma are assumed to
be small in comparison with the inhomogeneity dimension. It is also assumed that the
longitudinal dielectric constant of the plasma e(x,w,k) =k ¢ ;(x,0,k)k ;k ; is a mono-
tonic function of the coordinate x. The spectrum of the natural longitudinal oscilla-
tions is determined under these conditions by the solutions @(x,k) of the dispersion
equation

€(x, 0, k) =0, (|Imw| << |Rew|). (1
The method used by us makes it possible, in principle, to solve the problem of plasma
relaxation independently of the type of the produced natural oscilations. We, however,

confine ourselves to a determination of the relaxation time 7(x) of the plasma waves
whose frequency satisfies the inequality

Rew (x, k) >>1 | kdw(x, k) /K|, (2)

The initial equation for the potential of the electric field (w<kc) is

a 4 4
’)_ﬂ..'_t_.)_d% ']=—=4ﬂp(r, ‘t). (3)
dx!
]
We assume satisfaction of the inequalities k£ .a> 1, and ad>r,, [a ~€/(Fe/dx), rp is
the Debye radius and k, is the wave-vector component along the X axis]. The kernel in
the integral equation (3) is connected with the dielectric tensor by the known

relation(!]
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Let x=x,(w,k) be a root of Eq. (1). The natural oscillations with given » and k are
localized near x,(w,k)}". We now use the weak-inhomogeneity approximation

e = a0 B = Byila, K)(x -2, (o, k). )
Here a,.j—e,-j[x=xo, Bij=—3€ij/¢9x[x=xn, a;k ;k; =0, ReB ;k k ;k ~2=a">0. Taking

g

the inverse Fourier transformation of (4) with respect to w and k we obtain the tensor

& ,;(x, to¥o), which we substitute in (3). We take next the Fourier transform of (3) and
obtam the following equation between the components 5(w,k) and $(w,k) (cf.!)

3 i 9B;

iB.. k. k. —— B, k., + —

IBL]kl ] akx+(Lle i 9 ok

ki k] --B’:]ki k}-xo )$= —:4115-
x

The solution of this equation is

- 47i el otk )
¢(wv k) = mie— f 1
/2 .’ L’ /2
(Bijki k]') k, (Bij(k )k; kj)
[ &, Buk=B ) ks
xexp|— [ dk7~i  x (o, k™) dk}*| dk],
2y B (kETE kL

(5

where k’ and k” are vectors with components (k' k,) and (k" _k, ) respectively. The
integration constant is chosen to make the Fourier component of the potential regular
as k,—+ o0, and we assume here that the plasma is thermodynamically stable:
Ime(w,k) > 0. The potential is determined by substituting (5) in the formula
+ o0 + o0
o(x,e .k ) =(2n)2 [ f @ (0, kK)exp (- iwt + ik, x)dodk . (6)
“* oate=00
We confine ourselves to the case of a sufficiently large characteristic spatial dimension
of the imhomogeneity of the extraneous charges, adp/dx S p. Then, taking the condi-
tion (2) into account, as well as k,.a> 1, we can take the exponential of (5) outside the
integral sign, and put at the same time k , =0. Assuming the times to be long enough
to make tdp/dt>p, we estimate the integral (6) in the geometrical optics approxima-
tion. Differentiating the rapidly varying functions in the argument of the exponential
with respect to w and k,, we obtain the stationary-phase points kx=k~ (x,0,k),
o=w(x,t k) from the equations

k
a x
— [ x, (w, k)dk, = -¢, x=x_ (o, k). @)
dw o

According to (2) and (7), in the zeroth approximation in the parameter
k(@In@/dk ) (i.e., neglecting completely the spatial dispersion), k is determined by
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FIG. 1 and FIG. 2. The figures show the
relaxation of Langmuir oscillations in a
plasma with bell-shaped distribution of the
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the expression & = —t9a&/3x. The linear growth of the wave vector with time arises in
our case, as in all problems with a continuous oscillation spectrum, as a result of the

" “dispersal” of the phases (seel*], as well as the review!*] and the papers,[>-8] in which
waves in an inhomogeneous plasma are considered without allowance for kinetic ther-
mal effects). The potential (6) can be represented in the form ¢ (x,z.k,)
=f (x,t,k,) exp(i ¥), where the eikonal is equal to

~

k t
iW(x,t, k) =—idot + ikx—if xo((:, k*)dky = =i [ @ (%, %) de’.

o v

The characteristic relaxation time should, obviously, be determined from the relation
T
flma( x, t°)de‘~ =1, (8)
L]

We examine in greater detail the Langmuir oscillations in a plasma with inhomo-
geneity density. From (7) we get

v -3 - ,
k= ko[l - ri(tlel? + kf_)],where k, =~tw]

%, (x) 3 K
Ime = ylk(x, ¢, kg ), k) = ~{—) ——=—"—— exp{-3+—
- ) (k2 + K2 )% o3 2 42 4R

1
2062 + K ) r? }

Here w?=4mn (x)e*/m,, f(x)=v /0., ®',=do ,/dx. Calculating the integral (8)
[see formula (11) below] we obtain

1 %
7 {x) = w‘e'l - kj]

272 ln(we/r Ia);-l )

This formula is valid if k| S70', €r'»0’. /o, and in addition 7 @', /@ , .k | )
<1, 7v 4 €1. The Landau damping of Langmuir waves in an inhomogeneous plasma
proceeds in the following manner (see Fig. 1): the amplitude of the oscillations
changes little within time intervals ¢ such that 7—»8=r’w'27*, rapid relaxation of the
oscillations takes place, at [f—7|~3&, and the oscillations can be regarded as fully
damped at £ — 7> 6. This time dependence is the consequence of the linear increase of &
with increasing time. A similar damping pattern is qualitatively observed also for other
plasma oscillations that satisfy Eq. ( 2), if the corresponding decrement depends ex-
ponentially on k. We present now the complete expression for the Langmuir-
oscillation potential:
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¢ (x, t) =—iR(x, k‘,.)coe(x)(oo;-2 t?+ kf)-x/z exp{(i ¥), (10)

3 1 w
iWem o (v )i+ = ro,(t3w)? + 3k2 1) ~(a/8)h —2

2 € r(iw (

ol
2.2
l—=3klr

exp -3 - (11)

2,,2 »2 2
2ri(tfo +k.L)

sk /t02) ]

where R (x,k)=5*=p(w (x )k )e*~* dk' /k’'. Formula (11) is valid under the
condition ¢ "'w ;2&w" ,/w'*€t. The imaginary terms written out in (11) give the cor-
rect value of the oscillation phase if t €min(ro’,) o ;V/5, @ 7 '(k #)"*, whereas the
amplitude of the oscillations can be calculated from formula (10) up to time ¢ ~7.
Figure 2 shows the relaxation in a plasma with a “bell-shaped” density distribution
w?=wj(1—x*/d?), under the condition that k /&', &t S7:

dp(x, ¢ )l

| E(x,t )j = | ———

- =w, | R(x) (1-€Y%

(1-¢2)% 1-¢?
X exp —ﬂ_f—— exp(—3—w) ,

whereé =|x/d, 8 =v ,t/d,B =(7/8)"aw,/ v 1, ¥ 1. It is seen from the figure that the
oscillations have the longest lifetime near the maximum of the concentration (the
concentration distribution is shown dashed). We note, however, that if x S a/(w.t)'?,
then our solution becomes inconvenient, since it is necessary to take higher-order
terms into account in the expansion (4).

The author thanks L.P. Pitaevskii, V.I. Karpman, and A.A. Rukhadze for a
discussion.

VEquation (1) with » and k given has, generally speaking, several roots x {(w,k). We assume that all these
roots are far enough from one another |k ,(x ?—x ) |» 1(i=4)), so that we can confine ourselves to consid-
eration of the field near each of these roots separately.
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