Properties of the endpoint of a multiphonon
spectrum
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The properties of the energy spectrum of liquid helium near the sound line
€= yp are investigated. At T =0 it is possible to impart to helium
energy and momentum only in the region on the (¢, p) plane above this
line, and as this line is approached the energy should be partitioned
among an ever increasing larger number of phonons. The probability of
this process, i.e., the imaginary part of the corresponding Green’s
function, is proportional to exp(—5#n In n), where n is the number of the
produced phonons.

PACS numbers: 61.25.Bi

It is known that at not too high pressures the energy spectrum of liquid helium
has a “‘decay” character, i.e., at small momenta it takes the form"
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with ¥ > 0. This leads to the appearance of phonon damping at absolute zero tempera-
ture. In its subsequent evolution the spectrum “bends” downward, so that at a certain
point p=p* the spectrum curve crosses the line e=up, whose slope is equal to the
speed of sound u as p—0. As the point p* is approached, the possibility of decay is only
into a larger number of phonons, and at the point p=p* the damping vanishes." It is
of great interest to determine the law governing this vanishing. It is this question
which is solved in the present paper.

This problem is a particular case of a more general one. The “sound” line e=up
in the (€,p) plane is the lower limit of the phonon spectrum of helium-at absolute zero
temperature it is impossible to impart to the helium energy or momentum in the
region below this line by producing any number of phonons. Therefore the dynamic
form factor of the liquid, i.e., the probability of inelastic scattering of neutrons with
transfer of energy and momentum ¢ and p should therefore vanish on this line. We
shall solve precisely this general problem by calculating the imaginary part of the
Fourier component of the Green’s function G (X)= —i{Tp(X )p(0)> made up of the
liquid-density operators. It is this imaginary part which is the dynamic form factor.

We calculate the minimum number of phonons that can be produced somewhat
above the sound line. It is ciear beforehand that the most convenient situation is the
one in which the phonon momenta are almost equal in magnitude and direction. Let n
be the number of produced phonons and let @ and k be the energy and momentum of

each of them. Then e=nw, p=nk and from the dispersion law (1) we obtain
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The method of solution and the character of the obtained result is easiest to
explain using as an example the excitation of an anharmonic oscillator with potential

energy 2 9
mw* x
u(x) = -—-9—--2 + ,3x3

by an external field of frequency E>w,. According to Landau, the matrix element of
such a process can be calculated quasiclassically, by diverting the integration contour
to the complex plane (2). We have for the transition matrix element

M~ exp{ [IV2m(u ~E) = V2muldx. 3

At small B the values significant in the integral are u>E, so that

*ovmdx ]

M ~exp|-FE [ ===

%1 \/2u,(x) = exp(_E,-)’

622 JETP Lett., Vol. 27, No. 11, 5 June 1978 S.V. lordanskii and L.P. Pitaevskii 622



2 mdx
L~ VZ2u(x)

is the imaginary time necessary for the oscillator to reach the point x, from the x, in
the forbidden region. At small 3 it is possible to calculate 7 by using the harmonic
approximation and cutting off the integral from below at a value of x, such that
u(x,) ~E, and from above at a value x, such that mw 3x 2~Bx 3. As a result we have

]M|2~exp(- = lp =———ete )

0

The principal problem of the boundary of the multiphonon spectrum was solved
by writing down the Green’s function in the form of a functional integral. The liquid
Hamiltonian corresponding to the dispersion law (1) is of the form
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where p’ and ¢ are respectively the operators of two canonically conjugate quantities—
the change of the density of the liquid and the velocity potential. The Green’s function
of interest to us can be written in the form'"

f{ ei(et—p')'p’(t,l')'p"'(O;O) eis fD'p’D(ﬁdtdsx
Gle,p) = =i ’ &)
[e15Dp D ¢

where the integration is over the values of p’ and ¢ at each point of the 4-space (z,r),
while .S stands for the functional:

4
s-j¢if. daxldzl—fH(c;S,-p')dzl . ©)
9t

Inasmuch as a large number of phonons take part in the process, it is clear
beforehand that a quasiclassical situation is obtained and it is possible to calculate the
imaginary part of G by the saddle-point method. The condition for the stationarity of
the exponential allows us to replace the functional S in the numerator by its value on
the classical trajectories, i.e., by the classical action, and to take it outside the sign of
the functional integration. The trajectories on the sections — o <, <0 and t<t, <
should then have the zero total energy and momentum, since p’ and ¢ should decrease
as t—— o, and its values on the section 0 < ¢, <t should be respectively € and p. The
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condition that p’ and ¢ be continuous at #,=0 and ¢ can be satisfied then only for
trajectories in the classically forbidden region. This means that in the calculation of
the action it is necessary to change over to imaginary time, and, just as in the case of
an oscillator, the most significant part of the trajectory is the one for which the cubic
terms in the Hamiltonian are still small compared with the quadratic terms. This
makes it possible to represent the imaginary part of the Green’s function in the form

ImG ~ exp(=2¢7), )

where 7 is the “imaginary time” necessary for a packet of phonons with frequencies
close to @ and with total energy € and momentum p to acquire a density comparable
with the unperturbed density p,. The shape of the packet must be chosen such that the
time 7 turns out to be minimal. Since the Fourier components of the density increase
like p , ~e **7, we have in order of magnitude p(r)~pod |°A ¢ “*", where 4 jand 4 |
are respectively the packet widths in k-space in the directions along and across p. It is
most convenient to choose 4 | ~(8¢€)'? and 4 | ~Se. As a result,

r~-5—1n(-3'-)1/2 ®)
2w Se

and the phonon production probability, i.e., the imaginary part of the Green’s func-
tion, takes the form

ImG ~L exp(=5nlnn), )]

where 7 is the minimum number of the produced phonon and is given by formula (2).
Formula (9) is of logarithmic accuracy in the exponent, i.e., the numerical coefficient
under the logarithmic sign is intermediate.

"We use a system of units with A=1.

'L.P. Pitaevskii and I.B. Levinson, Phys. Rev. B 14, 263 (1976).

*L.D. Landau and E.M. Lifshitz, Kvantovaya mekhanika (Quantum Mechanics), § 52, Nauka, 1974
[Pergamon].

*V.N. Popov, Kontinual’'nye integraly v kvantovoi teorii polya i statisticheskoi fizike (Continual Integrals in
Quantum Field Theory and in Statistical Physics), Atomizdat, 1976.

624 JETP Lett., Vol. 27, No. 11, 5 Junn 1978 S.V. lordanskii and L.P. Pitaevskii 624





