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The bremsstrahlung of electrons and positrons in the energy region e, 3 1
GeV has a coherent character at small inclination angles 6 of the primary beam
to the crystal axis. The theory of the effect in the first Born approximation
was glven in [1 - 3]. In this approximation, there is no distinction between
the radiation of electrons and positrons.

We wish to show that at sufficiently small angles 0 the coherent effect
increases the relative contribution of the second and higher Born a%proxima—
tions, and the expansion parameter becomes not the usual Ze? but Ze?/e,ab?,
where €; is the electron energy and a is the lattice constant. This leads to
an appreciable difference between the radlation of electrons and positrons at
small angles © even in crystals of light elements.

The cross section with allowance for the first and second Born approxima-
tions is given by
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Here S,; and S, are the traces of the products of the matyices constructed in

the usual manner from the Feynman diagrams [4]; v(g) = (g2 + p~2)~! is the

Fourier component of the screened Coulomb potential, p is the screening radius,
. . = > > 3> .

g and g, are the reciprocal-lattice vectors, and 9 = p; - p, - kK 1s the mo-

mentum transferred to the crystal. S, and S, contain denominators of the type

K= 2p;g _—gz = 2‘]9{(‘ - 92‘/2‘19e)’
T =2p,8, +8 = 2czgu(l+ 9t/ 2¢,9.p + ng,/9:¢)

where gy is the projection of g on p,;. From the kinematics of the process 1t
follows [1 - 3] that g, > § = wm?/2e,€,.

N We consider for simplicity a cubic lattice and gssume that the momentum
p; lies in crystal plane xz (0 is the angle between p, and the crystal axis z).
The main coherent contribution to the cross section (1) are then made by the
reciprocal-lattice vectors with gz = glz = 0. PFor these, gy = GgX and gl2 =

Gglx, leading to the appearance of factors 672 in S; and 6~ % in S,.

For the wvalues of g and El which make the main contribution to the cross
section, the second and third terms in the parentheses in the expressions for
K and T are small, making it possible to simplify greatly the expressions for
S, and S,, and in the case of S, there is separated an additional factor p-1t,
Integrating further with respec% to d0d0,, we obtain
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The calculation of the sums entering into d¢ in the real case of a three-
dimensional crystal leads to difficulties. We shall therefore consider a model
that differs from a real crystal in the averaging of the potential over the y

axis. This averaging reduces to imposition of the conditions g_ = gl = 0 in
the sums (2). y y

The sum over 81y can be replaced with good accuracy by an Iintegral. As-~
suming that w/e; << 1, we obtain as a result

do o 22g3 U7 o exp (- Agl) 25
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where we have introduced the factor eXp(—Agi), which takes into account the
thermal motion of the atoms of the crystal [1 - 3].

In this expression, in the case of positrons 72 > 0, and in the case of
electrons Z < 0, and therefore the second Born approximation increases the
cross section for the radiation of positrons compared w1th that of electrons.
With decreasing angle 8, this effect increases like 6-2 At very small 6,
when the contribution of the second approximation becomes comparable with the
contribution of the first, formula (3) ceases to be valid, and it is necessary
to take into account the higher Born approximations.

We note that the incoherent part of the cross section does not lead to a
noticeable difference between the radiation of the electrons and the positrons.

For a real three-dimensional crystal there appears in the expression for
the second Born approximation a factor (a/p)? 1 in addition %o (3), and the
relatlze contribution of the second approx1mation becomes of the order of
Ze/epB=.
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The phenomenon of channeling of charged particles was discussed theoreti-
cally in a number of papers [1], but nonetheless the distribution function of
the ionization losses of the energy under conditions of channeling has not yet
been calculated. The purpose of the present article is to call attention to
the fact that in the case of channeling of heavy particles there exists an
approximation in which the inelastic processes can be described in an exceed-
ingly simple manner.

Indeed, taking into account the smallness of the characteristic angles of
the scattering of the heavy particle by an electron compared with the char-
acteristic angles of elastic scattering of a heavy particle by a nucleus, 1t
can be assumed that the scattering by an electron does not change the direction
of motion of the heavy particle, and changes only its energy.

In this approximation, inelastic scattering does not change the distribu-
tion of the heavy particles over the cross section of the beam. Therefore, in
the kinetic equation for the distribution function of the particles with re-
spect Lo the energy loss A and the coordinates x and r, , the transverse coordi-
nates T play the role of parameters:

aflx,n ., A) T
(xa e f de wgle,n) [F(x, 1, A=) = Flx,1), A)], (1)
X

In the case of small losses (A << E ) the probablllty of loss of energy € by a
particle per unit path w (e, rL) = Wp (e, r ), and the solutlon of (1) takes
the form

+ j oot

f(x,r‘., A) = 2mi)~t f dpexpl ~pA - c}dcwE (e, rL)[l—e"‘]L (2)
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The final particle-energy distribution function is obtained by averaging
(2) over the spatial distribution of the transverse coordinates of the parti-
cles W(r ) due to the elastic scattering

Flx,A) =f o2 Wi ) fx, 5, A) (3)

where the integration over the transverse coordinates has been reduced to inte-
gration over the transverse cross section of one unit cell.

2. In an amorphous medium w(rL) does not depend on r and (3) coincides
w1th the particle-energy distribution function in an amorphous medium [2],
m(x, A). TIn a single crystal, the flux of positively charged particles

moves in such a way that the number of units between the crystallographic
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