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We shall show that the effect of vanishing of local levels upon screening by free
carriers, predicted theoretically in [1] and observed experimentally in [2], can lead, in the
case of monopolar injection from the contact (i.e., in the space-charge-limited current mode
- SCLC), to an S-shaped current-voltage characteristic.

We consider a thin dielectric layer of thickness L, in which there is a high concent-
ration Nt of monoenergetic electron traps of depth Et' The electrons injected from the
contact are distributed among the traps and the conduction band. The free electrons screen
the traps and Et decreases. At a critical voltage V = V. at which the concentration of the

1
free electrons becomes sufficiently large, n = n,, a cascade-like decrease of E, and an in-

crease of n set in as a result of the release of the electrons from the trap, aZd a region of
negative conductivity appears on the current-voltage characteristic. This process is in
essence a Mott transition due to the injection [3].

Let us obtain the current-voltage characteristic of the dielectric diode under consi-
deration within the framework of the simplest SCIC model [4]. The initial system of
equations is:

i= Qu"(V/L) ’ (l)
CV/qL =n +n,, (2)
nN¢ 9(Es ) “E, /KT _ 0 n/i, _lLz>0
ny = n +ch H ch =Nce -.che ’ o(z) = 0,2 <0? (3)
n me(kT)2
E, = Efo - kT-ﬁ-; B ———-—qu , (%)

where J is the current density, u the electron mobility, C = ¢/baL the interelectrode geo-
metric capacitance, € the dielectric constant, g and m the charge and mass of the electron,
Nc the effective density of states in the conduction band. The phenomenological expression
(4) for the level shift can be obtained by analytically approximating the the numerical
curve obtained in [5]. Substituting (3) in (2) and differentiating the expression term by
term with respect to n, we have respectively

CV/qL =n +[aN,6(E,)/(n +N°,e"/", (5)
C dv | Nge"/™@ - n) _ n
e N NG O T e e ) (6)

118



Substituting n(V) as given by (5) in Eq. (1), we obtain the current-voltage characteristic

3(V). It follows from (6) that there is always a region dV/dn < O corresponding to the

region of negative conductivity on the current-voltage characteristic. A qualitative plot of
the function n(CV/gL) is shown in the figure. The correspond-

n

ing characteristic points are:

E N gLy _[Eso_ Ne LR R 7o
n!=ﬁ(—’;’f——ln—ﬁ-); (72 v‘—C[(kT n—=|+ 5 |° (7o)

n, = iE /kT; (7¢) vz—.ié_nE JkT. (14

3

We note that owing to the level shift the usual region of

sharp increase of the current on the current-voltage charac-

teristic of the space-~charge-limited currents assumes an
S-shape form in this case, i.e., Vl =V, __, - the voltage at

which the traps are filled,

tf

/gt

An estimate of the characteristic time of fluctuation

developuent in the instability region yields:

~E, /kT
to
T:08
At ~ i , (8)
[ NNA2relaN_/7) - 11
where Teo = [<vSt>NJ'1.v-the thermal velocity of the electron, and St is the trap capture

cross section.

A similar Mott transition (metallization upon injection) can be realized also in a
system with high concentration of weakly-ionized donors. If this concentration is sufficient-
ly high, then the system is unstable and goes over into a state with high conductivity even
when V = 0. In other words, it turns out that V2 < 0.

Effects of similar nature can arise as a result of the action of contact fields and the
field effect (metallization of the near-contact or near-surface region, or else of the
entire high-resistance layer if the latter is sufficiently thin).

Of course, similar phenomena can occur also in combination with impact ionization,
double injection, the Pool-Frenkel effect, etc.,, leading to an S-shaped current-voltage
characteristic and to metallization of the system.

Let us estimate the thickness of the dielectric layer at which metallization by in-
jection is possible, using formula (Tb). Putting V,/L = 5 x 10° V/em, ¥ = 20 - 10?2 o3
> n(Eto/kT)’ we get L = 1072 - 1077 cm. Thus, this effect can apparently be realized in
very thin layers with large defect concentration.

It can be assumed that the known phenomenon of switching in glass-like semiconductors[6]
is connected with metallization by injection, facilitated by the Pool-Frenkel effect.

The authors thank V. L. Bonch-Bruevich for useful discussions.
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The general derivation of the kinetic equation [1] is based on the separation of the
action of the external field on the electron from the effect of the collisions with the
scatterers. It is assumed that the electron moves between collisions under the influence
of the field like a classical particle with a dispersion law determined by the band structure
of the semiconductor, and that the electron scattering probability does not depend on the

field. Accordingly the kinetic equation takes the form

of o _(dn [, . . o
S 4 oB S S(m,[wm » (") - W(p, )f(p)]. (1)

where the right side contains the collision term and the left side the force term. £(p) is
the electron momentum distribution function, E is the electric field, which in general
depends on the time, and e is the electron charge. W(E', 3) is the probability of transition

from the state ;’ to the state ;, and is in general the sum of terms of the form
. ‘M(p’l p) '28 [C(p’) - G(p’ + Ep‘;p]n (2)

where M(g', ;) is the matrix element of the operator of interaction between the electron and
] the scatterer, 6(5) is the electron energy, and Ep',p is the energy lost or acquired by the
electron on scattering.

The purpose of the present paper is to derive a quantum-kinetic equation for electrons
in a homogeneous high-frequency field E(t) = Ebcos wt under conditions when the field gquan-
tum energy hw is comparable with the average electron energy €.

We derive the equation using an example with electrons having a quadratic dispersion.
Defining the electric field in terms of the vector potential A(t) = -(ﬁoc/w) sin wt, where
¢ is the speed of light, and solving the Schrodinger equation (f = 1)

---‘—Af'..'hz
NV P (3)
at =elpy )‘/’1 6(!7, f)— am R

we obtain the wave function of the electron in the field

1
Up(r,t) =explipr— i fe(p,t )dt 71, (4)

Under conditions when wt >> 1 (1t -~ free-path time), the canonical momentum ; is a good
quantum number, since it is altered only by the collisions. It is therefore natural to write
the kinetic equation for the distribution function of the electrons with respect to the cano-
nical momentum, F(g) (we use the same letter for the canonical and kinematic momenta, since

the corresponding distribution functions are denoted by different symbols).
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