An exact solution of (1) was found for }?: ék;ec (é*gec is that part of the Hamiltonian

which commutes with S ,). This approximation is valid when (wgtg)2 >> 1 (19 >5%10"11 sec).

Theoretical EPR spectra were constructed for the entire interval of partcical interest
10710 sec < 19<10~7sec (0.07 < o1g< 70). Examples of the derivatives of the absorption

lines in the region of slow rotations are shown in Fig. 1.

We investigated experimentally magnetically-dilute solutions of the radical in mixtures
of glycerine and water, the viscosity of which was measured independently. Examples of the
derivative of the EPR line shape (A = 3 cm) of the radical at different temperatures are
shown 1in Fig, 2.

To identify the experimetal spectra, we used the Stckes-Finstein formula customarily
employed in the theory of magnetic relaxation [10], derived within the framework of hydro-
dynamic concepts

4 pal
T =
C nuT

n ’

where n is the viscosity of the medium and a is the effective radius of the radical. In the
region of fast rotations (1_ < 102 sec) v was determined independently from the with of the
resonance lines [11]. Ehischas made it pogsible to calculate the hydrodynamic radius of the
radical (a = 1.6 + 0.1 A. The values of 1_ corresponding to the experimental spectra in the
region of slow rotations (Fig. 2) were calSulated with the aid of formula (2), using the known
radius and viscosity.

The theoretical and experimental spectra practically coincide, making it possible to
conclude that the rotational diffusion can be effectively described by the relatively simple
model of the purely-discontinuous random process. However, the fact that the parameters tg
and 1_ coincide within the limits of experimental error (v15%) for identical spectra raises
the qliestion of the possible equivalence of the models of jumplike and continuous diffusion
for the description of paramagnetic-resonance phenomena.

In conclusion, the authors thank E. G. Rozantsev for synthesizing and furnishing the
radical with N!5, and N. N. Korst and E. I. Rashba for useful discussions and I. F. Shchegolev
ofr interest. '
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The subject of the present communication is a discussion of the effect of lateral wind
on the propagation of a powerful laser beam under conditions of thermal self-action in ab-
sorbing media. As 1s well known, heating of the medium by the light beam gives rise to lens
feffects, such as thermal self-focusing or self-defocusing. The removal of heat by the wind
from the beam region changes the thermal regime in the medium, and hence also the properties
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of the thermal lens. The asymmetry of the heating of the medium (the temperature is higher
on the leeward side than on the windward side) cause the beam to be deflected from its
initial propagation direction [1]. The deflection of the beam in the direction opposite to
that gf[tkjewind was experimentally registered in liquids [2] (argon laser) and in air (CO,
laser) [3].

We present in this paper the thoery of this effect under conditions close to the experi-
mental ones. We derive expressions for the deflection angles and for the deformation of the
beam at arbitrary wind velocities (the flux is assumed to be stationary and homogeneous).

Let a Gaussian light beam pass along the z axis through layer of absorbing medium of
length 2. The heat-conduction equation with allowance for a side wind blowing along the y
axis with velocity v is

aT  oT 21 | T PT\ 5pe-dr xluy
—_—tv— = x(—5 * + )+ S e o , (1)
ar dy ay dx2? dz? ﬂazpcp

where x 1s the temperature conductivity coefficient, § the absorption coefficient, P, the
input power, a the beam radius, and pCp the specific heat.

Neglecting the longitudinal heat diffusion in (1) (52T/3z2 = 0), we can find the sta-
tionary temperature distribution in the form of an expansion in the coordinates x and y near
the mean axis

s5Pedr 2 x
0 y Y 3
e L (X @
4111( a a a e
where

T 2y K (242 K2y 1+ 1 (3)

y = vexp 2y ol 2y%) - Kyley 2y

1
T, = [4y7K, (29 - (4y2 = 1) K (2y") Jexp (2) - Pk ()
_ 2 2

T, = e K,(2y%) exp(2y%) . (5)

Here Kn is the Macdonald function, vy = va/dx 1s the ratio of the heat-conduction time Tp =
a2/2y to the time of travel of the wind across the beam, Ty = 2a8/v, and k = )(pCp is the

heat-conduction coefficient. Plots of functions (3) - (5) are shown in Fig. 1. As a result
of the uneven heating, the medium becomes optlcally irhomogeneous: n = ng + (dn/dl)YT{xy).
Retention in (2) of only the terms written out there corresponds to an aberration-free

description of the thermal lens, in which case T determines the slope of the beam, and T

and Tyy determine its defocusing (divergence). Y The deflection effect is strongest in *x

the far field, where the angular distribution of the intensity is given by

4"02(153 _ (8, + 6,17,
I(o , R ) = exp{ - ——————————n
o 2 2./ 92 2 92 (n T )2
\/f)d + (Gann) \/9d+ (6,17, l a’ Vnl'ry
02 (6)
9('21 +(0 an"".)z !

78



where 6, = A/2na is the diffraction divergence

d
of the beam, a is the wavelength, and enl is

the nonlinear divergence entering in the theory
of stationary thermal decocusing [4]: Oy =

ed(P6/Pcr)’ P, = P [1 - exp(-82)] is the power
absorbed in the medium, and P__ = ix/(dn/aT)
: s e er
is the critical power.
The behavior of' the beam for P /P, = 10, Fig. 2

at different wind velocities (y = 0, 2, 4, 10) is shown in Fig. 2, where the changes of the
beam contour (at the e~! intensity level), in accord with formula (6), are presented. We now
proceed to discuss the results.

r-z ’hJ r-m

The effects of defocusing decrease monotonically with inereasing wind velocity, namely,
the angular dimensions of the beam decrease. The defocusing along: the wind is much smaller
than in the perpendicular direction (when y >> 1 we have Txx v Vr/2y and Tyy ~ 1/2y2). 'This

1s due to the ever decreasing role played in the heat transfer by the mechanism of heat con-
duction along the wind, compared with the removal of heat by the wind current. At the same
time, the heat conduction in the transverse direction is the only heat-transfer mechanism.

As a result of the non-wiiform defocusing, the beam takes on an elliptic form elongated across
the wind. The eccentricity of the ellipse first increases with increasing velocity (e ~ ¥).
At very large velocities, however, when the actlion of the thermal lens beccmes much weaker,

ed = eanxx’ the decisive role is assumed by the diffraction spreading of the beam, and its

cross section becames round again.

The beam deflecti~n first increases rapidly with increasing velocity, reaching an abso-
lute maximum at y = 0,3. Here, however, the inclination of the beam against the background
of still-strong defocusing is manifest rather poorly. The strongest. deflection action of the
wind occurs at medium velocitles, when the inclination of the beam greatly exceeds the defo-
cusing along the wind (’I‘y >> Tyy)' The defocusing across the wind and the deflection are

comparable in magnitude: T~ 1/2y, T__ ~ vVn/2y. Thus, the deflection of the beam against
the background of the defogusing becolids more and more pronounced with increasing wind velo-
city. This continues until diffraction spreading of the beam comes into play. We note that
in the region of medium velocities the deflection angle depends relatively little on the ve-
locity (an effect called saturation [3]). At large velocities (y >> 1), the effect can be
adequately described by the theory proposed in [1].

Let us estimate the effects. In the case of radiation with A = 10.6 u, the value of
the critical power Pcr is 0.4 W in water and 0.25 Winair. The regions of medium velocities

(y = 1) for a beam with a = 2 mm propagating in a liquid correspond to v = 1072 cm/sec, as
against 10 em/sec in air. At a large margin of input power, the thermal phenomena will be
observed up to velocities corresponding to y = Pé/Pcr'

The described picture of thermal defocusing and of the deflection of a beam by a wind
agrees with the experimental observations [2, 3]. Some deviation of the beam cross section
from ellipticity is due to aberrations. It would be of interest to consider in the future
these phenomena in extended media (with allowance for the accumulating action of the wind
and of the defocusing), and also in the case of nonstationary turbulent streams. A unique
effect, namely wind-induced flickering of a light beam, be occur here.

The authors thank S. A. Aklmanov and R. V. Khokhlov for useful discussions.
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