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The anomalous behavior of superfluid systems, in which the energy gap vanishes at
diabolical points with a multiple topological charge, is analyzed.

The superfluid liquids *He-4 and *He-4, and possibly also certain superconduc-
tors'~ have zeros in the spectrum of fermion excitations. These zeros lead to singulari-
ties in the low-temperature properties of these systems. The most interesting proper-
ties, which are similar to the chiral anomaly,*’ arise in the fairly common case in
which the zero is a diabolical point of the spectrum (a point at which two cones are
tangent: a “diabolo”®). In other words, the zero is a topologically unremovable point
of tangency of two branches of the spectrum,’ in this case a branch of quasiparticles
and a branch of quasiholes.'®
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In certain classes of superfluidity and superconductivity, such as the f state in-
duced by a dipole interaction in *He-4, (Ref. 11) and the D¢(C,) class of singlet
superconductivity, which may occur in UPt,, the diabolical points are multiple points.
As we will see below, the multiplicity of the zero changes the anomalous properties.

In an analysis of a diabolical point it is sufficient to consider simply a two-level
Hamiltonian which describes those two branches of the spectrum (a quasiparticle
branch and a hole branch) which make contact at the diabolical point (and to ignore
other branches). The corresponding Bogolyubov Hamiltonian near a diabolical point
k, in momentum (k) space thus contains no spin or band indices:

ek) Ak)

A*k) - e(k)
Here e(k) is the energy spectrum in the normal state, reckoned from the Fermi sur-
face; A(k) is a momentum-dependent gap; and the components of the vector m(k)

decompose H in two-row Pauli matrices 7, so the spectrum of particles and holes is
E, = +|m(k)|. At the diabolical point itself we have E _(k,) = E(ky) = 0.

The topological invariant N, which shows the multiplicity of the zero or the
multiplicity of the tangency of the two branches, is determined by an integral over a
closed surface ¢ around the diabolical point:

N 1 § ds imi- [om  dm 2)
= €. |m m—, -—
8w o Uk ( ak, " 3k, ) '

In the simplest realization of diabolical points, with topological charges -+ N,

kx + ik N
e(k) = Vp(k—kg), A)= Ao "_,;Xa , (3)

the point ky, = krZ has a charge N, and the point k,, = — krZ has a charge — N. In
superfluid *He, this situation corresponds to Cooper pairing into a state, whose z
projection of the orbital angular momentum is L, = N.

H(k)=< ) = rm(k). (1)

The singularities which arise in *He-A4 because of diabolical points with N = 1 are
well known, since in this case Hamiltonian (1) is linear in k—k, near
ko(m, (k) = €, (k, — ko;) and has a structure which corresponds to the Hamiltonian
of a massless chiral electron which is moving in an electromagnetic vector potential**°
A =kq(r,2). In the case of superfluid *He-4,, quasiparticles with spins parallel to the
magnetic field have a diabolical point in the spectrum with'! N = 3, while in the case
of the singlet D(C,) superconductivity class we have® N = 2. It is thus worthwhile to
examine the anomalies in the behavior of systems with an arbitrary value of A, in
which there is no direct analogy with quantum electrodynamics (QED). In this letter
we are presenting the basic results.

1. Zero-charge effect.* This effect persists at arbitrary N, despite the difference
from QED. An expansion of the free energy F in gradients of the position of the
diabolical point, k,(r,t), or (equivalently) in gradients of the vector 1(r,¢), which
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specifies the direction of the orbital angular momentum of the Cooper pairs
(ko= =+ kp1)r,r)], has a logarithmic divergence as 7—-0:
F3=K; fd®x[], curl 1]2 Ky=N FkF ln—A—;— (4)
3 3 ’ » 3 247 2 T2 .
This situation corresponds to QED with N massless charged fermions.

2. Wess-Zumino action. For the orbital dynamics of the vector 1 (Ref. 12), the
Wess-Zumino action, like the Berry phase, can be written in general form in terms of a
Green’s function G = (v — H) ~! and an additional coordinate x> (Ref. 13, for exam-
ple):

1
Swz = - T Jdwdtds® Tr (63, 67163671 GosG ™! — 1 > x°)
1

=72 T fdtdax®|m|"® (m[d,m, dsm]) . (3)

This action contains, in addition to the term (#/2m;, )p<i> which is natural for superflu-
idity (2m, is the mass of the Cooper pair, p is the density of the liquid, and ® is the
phase of the condensate), the following contribution from the diabolical points, whose
positions k, (r,z,x°) depend on r,z,x”:

TN, S d®xdtdxS (&, [3,k,, dsk 1), (6a)

S = ,

wzZ 247{2 ta
where N, is the topological charge of the a-th point. In the case of two diabolical
points of the type in (3), with k, = + k1, the result is the expression found in Ref.
12 for the case N = 1, multiplied by N:

3

1 "F_
Sz = .2.Ncofd3xdtdx5(l[a,l. asl]), Co= EYCR (66

Because of this additional contribution to the action, the dynamic angular momentum
L, of the liquid is substantially smaller than its natural value #Np/2m;:

1
L, = -an/2 - Co)l. )
2 ms

3. Anomalous current.*> The anomalous current is also multiplied by N. The
same is true of the anomalous current source I, which describes the momentum trans-
fer from the superfluid motion to the normal motion'*!> and which has a precise
analogy with a source of chiral charge in QED*:

1 3
=— —2~NCol(l curl 1), I= £y NCo1(3, 1+ curll). (8)

.
-'anom

4. Density of the normal component at T=0. In the presence of a countercurrent
w =v, — v,, the density of the normal component at 7= 0 is found from the expres-
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sion for the incoherent current of normal excitations. These excitations are described
at 7'=0 by a step 6-function distribution: j,,. = Z,kf(kw — E(k), where the energy
E is given by E? =€ + AJ [ (k,1)*"/k %] according to (3). If w<Ay/k;, we have
the following expression for the longitudinal density of the normal component, p,,;

1
Jine = Pap1AW), By = Np K (kg Gw) | AP =B (N, 31D, (9)

where N is the state density in a normal Fermi liquid.

5. State density. It follows from (9) that the state density on the Fermi surface,
N(0), is finite in the presence of a countercurrent and is given in order of magnitude
by

N(O) ~ Ng (kg Qw)/ A 2N . (10)

Using (10), we can find N(0) in type-II superconductors in a sufficiently strong
magnetic field H, such that the distance between Abrikosov vortices is smaller than
the penetration depth. In this case w falls off as 1/7 outside the core of the vortex, and
if the magnetic field is not parallel to the vector 1, the region between vortices will
make the following contribution to the state density:

H H H 'V
NO ~Np 7~ln ——, N=l; NO ~Ne[z—) . ~>1 D
c2 c2 c2

If, on the other hand, we have H||1 and thus w1 = 0, only the cores of the vortices will
contribute to N(0), as in superconductors lacking diabolical points. As a result, N(0)
will be a linear function of the magnetic field'®: N(0) ~N(H/H,, ). A contribution
to the state density linear in A has been observed'” in UPt,, but in the case in which H
was directed along the hexagonal axis, i.e., along a possible vector 1. Consequently,
resolving the question of the existence of and the nature of the zeros will require an
experiment with damping of ultrasound in magnetic fields directed obliquely with
respect to the axis. The same is true of the specific heat, which would be ~ 7'+ ™
in the absence of a field, while in a field it would depend on both the magnitude and
the direction of the field.

6. State density in the texture of the vector 1. This state density has been found
here in the semiclassical approximation, which is the same approach that was taken in
Ref. 14 in the case N =1, (in the case N = 1, the result of the semiclassical approxi-
mation differs by a factor of 2 from the exact result'®):

N@©) ~ N (I[L curl 1][v, / Ag)2/N*1) (12)
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