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. We wish to call attention in this article to a hitherto
uninvestigated part of the spectrum of ordinary Hamil-
tonians used in quantum field theory. As the first
example we consider the model of a self-interacting
scalar field in two-dimensional space-time, with
Hamiltonian

)

In this model, the vacuum is filled with the Bose con-

densate ¢ 2= pu?/x. Over the vacuum there is a single-

particle state with mass v2u, which represents small

oscillations of the constant condensate. However, con-
stant ¢ is not the only stable equilibrium state. There
is another extremal of the potential energy in (1), de-

termined from the equation

¢ ptg, ~Agd =0 )]

with boundary conditions ¢Z(+«)= u?/x, which mean
that the vacuum is perturbed only within a finite volume.
The solution of (2) is

$.(x) = -t @3)
NG
To calculate the spectrum of the vibrational energy
levels near the considered equilibrium point, we write

¢(x)= ¢ (x) + ¢p(x)

and neglect the terms ¢® and ¢* in the Hamiltonian (the
latter is valid if x < p2), Diagonalizing the obtained
quadratic Hamiltonian, we obtain the mass spectrum
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In formula (4), the first term is the potential energy at
the equilibrium point, the second is the zero-point
oscillation energy, and the third is the excitation
energy. Thus, in this model there are three types of
particles with anomalously large masses. We call these
objects “extremons.”

In the generalized formalization, the results consists
in the fact that each stationary regular solution of the
classical equations of motion corresponds in quantum
field theory with weak coupling to its own set of ex-
tremons, the masses of which can in principle be
calculated. We shall show that extremons exist in three-
dimensional models. We consider the theory of the Higgs
isovector field ¢.(x), a=1, 2, 3,
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The equation for the extremal

Vig, +uld, =2 Z g} ¢, =0

has a solution
#, = xﬂu(r)r"l ,

where u is subject to the equation
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u(m)=p./\/x; ufr

= const r.

We call this the “hedgehog” solution, inasmuch as the
isovector at a given point of space is directed along the
radius vector. The solitary hedgehog is not an extre-
mon, since its energy diverges linearly at large dis-
tances, owing to the inhomogeneity of the distribution of
the directions of the field ¢,. There are two ways of
overcoming this difficulty. The first is to connect to the
hedgehog a Yang-Mills field, i.e., to make the substi-
tution

b
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and to add the Yang-Mills Hamiltonian to (5)., By virtue
of the gauge symmetry of the second kind, the inhomo-
geneity of the directions then becomes physically un-
realizable and makes no contribution to the energy,
which therefore turns out to be finite, The solution of
the classical equations is

$o(x) =z u(r)r

o 1 ©)
A2(x) = gy %, (alr) 572) .

where u and a satisfy the equations
2, 3
Wt —u +(pt-2g%r))u-2ud=0
r
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The mass of the resultant extremon is of the order of

u?
M~ —):m?,’zvmv/gz

(where m, = g%u?(~) is the mass of the vector bosons).

As is well known, the model under consideration has
one massless vecton and two massive vectons, If the
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first of them is identified with the photon, then the
hedgehog has by virtue of (6) a magnetic charge.!

It is easy to construct hedgehogs in which all the
components of the gauge field are massive and concen-
trated within the region 1/m,. To this end it suffices
to consider an isotensor or isospinor Higgs field. In the
former case the solution should be sought in the form

$as =1 (rg %y By Yulr)

and in the latter case it has a more complicated form
and will be described elsewhere.

Another possibility for the construction of an extre-
mon is formation of a hedgehog-antihedgehog pair. It
is easy to show that the pair energy is E =AR, where
R is the distance between the pair components. To
stabilize this state it is necessary to consider levels
with zero angular momentum L

L2
E!// =AR +B;2 . (7

The mass spectrum is given by

MYL) = const L4/3 (8)

A rigorous justification of (7) calls for the solution of
the equation for the extremal with allowance for the
fixed angular momentum. We have derived such an
equation, but are unable to solve it exactly. Therefore
the validity of (8) depends on the hypothesis concerning
the character of the hedgehog rotation. In particular,

if it is assumed that the region of space contained be-
tween the hedgehogs takes part in the rotation, then we
obtain in place of (8) the formula

ML) = const L .

There is no doubt, however, that a formula of the type
(8) for the energy should lead to growing Regge
trajectories.

Thus, in the interpretation of the elementary-particle
spectrum on the basis of field theory one should bear in
mind the many new possibilities that are afforded by
taking the extremon states into account.

Ideas very close to those described above were
developed in'~%! but it seems to me that both the
analysis method and the results obtained above are new
to some degree.

I am grateful to V.L. Berezinskil, L.B. Okun’, and
L.D. Faddeev for useful discussions.

1yThis circumstance was pointed out to me by L.B. Okun’,
After completing the work, I obtained a preprint by t’Hooft,
which contains a similar result.
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