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The behavior in magnetic fields of a highly correlated electron liquid approaching the fermion condensation
quantum phase transition from the disordered phase is considered. We show that at sufficiently high tempera-
tures T > T™*(z) the effective mass starts to depend on T', M* T—'/2, This T~%/? dependence of the effective
mass at elevated temperatures leads to the non-Fermi liquid behavior of the resistivity, p(T') < T and at higher
temperatures p(T') o T3/2, The application of a magnetic field B restores the common T? behavior of the
resistivity. The effective mass depends on the magnetic field, M*(B) x B~2/3 being approximately indepen-
dent of the temperature at T < T*(B) «x B*%. At T > T*(B), the T~/ dependence of the effective mass is
re-established. We demonstrate that this B—T phase diagram has a strong impact on the magnetoresistance
(MR) of the highly correlated electron liquid. The MR as a function of the temperature exhibits a transition
from the negative values of MR at T — 0 to the positive values at T o« B*®. Thus, at T > T*(B), MR as a
function of the temperature possesses a node at T oc B/3.

PACS: 71.10.Hf, 71.27.+a, 74.72.—h

An explanation of the rich and striking behavior of
the strongly correlated electron liquid in heavy fermion
metals and high-temperature superconductors are, as
years before, among the main problems of the con-
densed matter physics. There is a fundamental ques-
tion about whether or not these properties can be un-
derstood within the framework of the Landau Fermi lig-
uid theory [1]. The basis of the Landau theory is the
assumption that the excitation spectrum of the Fermi
liquid looks like the spectrum of an ideal Fermi gas.
This excitation spectrum is described in terms of quasi-
particles with an effective mass M*, charge e and spin
1/2. The single-particle excitations, or quasiparticles,
define the major part of the low-temperature properties
of Fermi liquids. The stability of the ground state of a
Landau liquid is determined by the Pomeranchuk stabil-
ity conditions. The stability is violated when at least one
of the Landau effective interaction parameters becomes
negative and reaches a critical value. The new phase at
which the stability conditions are restored is again de-
scribed within the framework of the same theory. The
Pomeranchuk conditions do not cover all the possible
instabilities. The missed instability corresponds to the
situation when, at the temperature 7' = 0, the effec-
tive mass, the most important characteristic of Landau
quasiparticles, can become infinitely large. Such a situ-
ation, leading to profound consequences, can take place
when the corresponding Landau amplitude being repul-
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sive reaches some critical value. This leads to a com-
pletely new class of a strongly correlated Fermi liquids
with the fermion condensate (FC) [2, 3], which is sepa-
rated from that of a normal Fermi liquid by the fermion
condensation quantum phase transition (FCQPT) [4, 5].

As any phase transition, the quantum phase transi-
tion is driven by a control parameter and is related to
the order parameter, which describes a broken symme-
try. In our case, the control parameter is the density « of
a system and the order parameter is x(p). The existence
of the FC state can be revealed experimentally. Since
the order parameter x(p) is suppressed by a magnetic
field B, a weak magnetic field B will destroy the state
with FC, converting the strongly correlated Fermi liquid
into the normal Landau Fermi liquid [6]. In this case
the magnetic field plays a role of the control parameter.
The transition from the strongly correlated liquid into
the normal Landau liquid was observed in several exper-
iments [7—10]. As soon as FCQPT occurs at the critical
point ¢ = xFpc, the system becomes divided into two
quasiparticle subsystems: the first subsystem is char-
acterized by the quasiparticles with the effective mass
My, while the second one is occupied by quasiparti-
cles with mass Mj. The quasiparticle dispersion law
in systems with FC can be represented by two straight
lines, characterized by effective masses My, and Mj,
and intersecting near the binding energy Fy.

Properties of these new quasiparticles with Mz are
closely related to the state of the system which is char-
acterized by the temperature T, pressure or by the pres-
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ence of the superconductivity. We may say that the
quasiparticle system in the range occupied by FC be-
comes very “soft” and is to be considered as a strongly
correlated liquid. Nonetheless, the basis of the Landau
Fermi liquid theory survives FCQPT: the low energy
excitations of a strongly correlated liquid with FC are
quasiparticles. The only difference between the Lan-
dau Fermi-liquid and Fermi-liquid after FCQPT is that
we have to expand the number of relevant low energy
degrees of freedom by introducing a new type of qua-
siparticles with the effective mass M} and the energy
scale Ey [4, 11].

When a Fermi system approaches FCQPT from the
disordered phase it remains the Landau Fermi liquid
with the effective mass M* strongly depending on the
density zrc — z, temperature and a magnetic field B
provided that |zrc — 2|/2rc < 1 and T > T*(z) [12].
This state of the system, with M* strongly depending
on T, x and B, resembles the strongly correlated liquid.
In contrast with a strongly correlated liquid, there is no
the energy scale Ey and the system under consideration
is the Landau Fermi liquid at sufficiently low temper-
atures with the effective mass M™* ~ const. Therefore
this liquid can be called a highly correlated liquid. Obvi-
ously, a highly correlated liquid has to have uncommon
properties.

In this Letter, we study the behavior of a highly cor-
related electron liquid in a magnetic field. We show
that at T > T*(z) the effective mass starts to depend
on the temperature, M* o T-1/2. This T-1/2 de-
pendence of the effective mass at elevated temperatures
leads to the non-Fermi liquid behavior of the resistivity,
p(T) ~ po + aT + bT?/2. The application of magnetic
field B restores the common T2 behavior of the resistiv-
ity, p ~ po + AT? with A o< (M*)2. Both the effective
mass and coefficient A depend on the magnetic field,
M*(B) o« B=2/3 and A & B~*/3 being approximately
independent of the temperature at T < T*(B) « B*/3.
At T > T*(B), the T—'/? dependence of the effective
mass is re-established. We demonstrate that this B — T
phase diagram has a strong impact on the magnetoresis-
tance (MR) of the highly correlated electron liquid. The
MR as a function of the temperature exhibits a transi-
tion from the negative values of MR at T — 0 to the
positive values at T o« B%/3. Thus, at T > T*(B), MR
as the function of the temperature possesses a node at
T « B*/3. Such a behavior is of a general form and takes
place in both three dimensional (3D) highly correlated
systems and two dimensional (2D) ones.

At |z—zpc|/rrc < 1 and T — 0, the effective mass
M* of a highly correlated electron liquid is given by the
equation [12]
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It follows from Eq. (1) that effective mass is finite pro-
vided that |z — zpc| = Az > 0. Therefore, the system
represents the Landau Fermi liquid. On the other hand,
M* diverges as the density = tends to the critical point
of FCQPT. As a result, the effective mass strongly de-
pends on such a quantities as the temperature, pressure,
magnetic field provided that they exceed their critical
values. For example, when T exceeds some tempera-
ture T*(z), Eq. (1) is no longer valid, and M* depends
on the temperature as well. To evaluate this depen-
dence, we calculate the deviation Az(T) generated by
T. The temperature smoothing out the Fermi function
0(pr —p) at pr induces the variation ppAp/M*(z) ~ T,
and Az(T)/zrc ~ M*(z)T/p%, with pr is the Fermi
momentum and M is the bare electron mass. The de-
viation Az can be expressed in terms of M*(z) using
Eq. (1), Az/zpc ~ M/M*(z). Comparing these de-
viations, we find that at 7' > T*(z) the effective mass
depends noticeably on the temperature, and the equation
for T*(z) becomes

Here ep(z) is the Fermi energy of noninteracting elec-
trons with mass M. It follows from Eq. (2) that M* is
always finite at temperatures T' > 0. At T' > T*(z), the
main contribution to Az comes from the temperature,
therefore

T*(z) ~ pi

* TFC EF
M MA:::(T) MM*T' (3)

As a result, we obtaian

M*(T) NM(E—F)I/Z. (4)
T

Equation (4) allows us to evaluate the resistivity as a
function of T. There are two terms contributing to the
resistivity. Taking into account that A ~ (M*)? and
Eq. (4), we obtain the first term p; (T') ~ T. The second
term po(T) is related to the quasiparticle width v. When
M/M* < 1, the width y o« (M*)3T?/e(M*) « T3/2,
with €(M*) o« (M*)? is the dielectric constant [5, 13].
Combining both of the contributions, we find that the
resistivity is given by

p(T) — po ~ aT + bT?/2, (5)

Thus, it turns out that at low temperatures, T < T*(z),
the resistivity p(T)—po ~ AT?. At higher temperatures,
the effective mass depends on the temperature and the
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main contribution comes from the first term on the right
hand side of Eq. (5). At the same time, p(T') — po follows
the T3/2 dependence at elevated temperatures.

In the same way as Eq. (4) was derived, we can
obtain the equation determining M*(B) [12]

* EF 2/8
e~ () ©)
where p is the electron magnetic moment. We note that
M* is determined by Eq. (6) as long as M*(B) <
< M*(z), otherwise we have to use Eq. (1). It fol-
lows from Eq. (6) that the application of a magnetic
field reduces the effective mass. Note, that if there ex-
ists an itinerant magnetic order in the system which is
suppressed by magnetic field B = By, Eq. (6) has to
be replaced by the equation [6],

M*(B) (B%BCJ " (7)

The coefficient of T'? in the expression for the resistivity
A(B) o (M*(B))? diverges as

A(B) (ﬁ)/ (8)

At elevated temperature, there is a temperature 7*(B)
at which M*(B) ~ M*(T). Comparing Eq. (4) and
Eq. (7), we see that T*(B) is given by

T*(B) (B — By)*/3. (9)

At T > T*(z), Eq. (9) determines the line in the B — T
phase diagram which separates the region of the B de-
pendent effective mass from the region of the T depen-
dent effective mass. At the temperature T*(B), there
occurs a crossover from the T2 dependence of the resis-
tivity to the T dependence: at T' < T*(B), the effective
mass is given by Eq. (7), and at T > T*(B) M* is given
by Eq. (4).

Using the B —T phase diagram just described above,
we consider the behavior of MR

p(B,T) - p(oa T)
p(0,T)

as a function of magnetic field B and T'. Here p(B,T) is
the resistivity measured at the magnetic field B and tem-
perature 7. We assume that the contribution Ap,,.(B)
coming from the magnetic field B can be treated within
the low field approximation and given by the well-known
Kohler’s rule,

Apmy (B) ~ BZP(O, GD)/p(Oa T)’ (11)

pmr(Ba T) = (10)

with @p is the Debye temperature. Note, that the low
field approximation implies that App,.(B) < p(0,T) =

= p(T). Substituting Eq. (11) into Eq. (10), we find
that
me‘(BvT) ~
(M (BLT)PT? + Apr (B) = O O.T)PT
p(0,T) '

Here M*(B,T) denotes the effective mass M* which now
depends on both magnetic field and the temperature, and
¢ is a constant.

Consider MR, given by Eq. (12) as a function of B
at some temperature T' = Ty. At low temperatures Ty <
< T*(z), the system behaves as common Landau Fermi
liquid, and MR is an increasing function of B. When the
temperature Tp is sufficiently high, T*(B) < Tp, and the
magnetic field is small, M*(B,T) is given by Eq. (4).
Therefore, the difference AM* = |M*(B,T)—M*(0,T)|
is small and the main contribution is given by App,-(B).
As a result, MR is an increasing function of B. At
elevated B, the difference AM* becomes a decreasing
function of B, and MR as the function of B reaches its
maximum value at 7*(B) ~ Ty. In accordance with
Eq. (9), T*(B) determines the crossover from 72 de-
pendence of the resistivity to the T' dependence. Dif-
ferentiating the function py,,.(B,T) given by Eq. (12)
with respect to B, one can verify that the derivative is
negative at sufficiently large values of the magnetic field
when T*(B) ~ Tp. Thus, we are led to the conclusion
that the crossover manifests itself as the maximum of
MR as the function of B.

We now consider MR as a function of T at some
By. At low temperatures T < T*(B), it follows from
Egs. (4) and (7) that M*(B)/M*(T) <« 1, and MR
is determined by the resistivity p(0,7'). Note, that B
has to be comparatively high to ensure the inequality,
T*(zx) < T <« T*(B). As a result, MR tends to —1,
Ppmr(Bo,T — 0) ~ —1. Differentiating the function
pmr(Bo, T) with respect to By we can check that its slope
becomes steeper as By is decreased, being proportional
& (By — By) "3 At T =Ty ~ T*(By), MR pos-
sesses a node because at this point the effective mass
M*(B) ~ M*(T), and p(B,T) ~ p(0,T). Again, we
can conclude that the crossover from the T2 resistivity
to the T resistivity, which occurs at T' ~ T*(By), man-
ifests itself in the transition from negative MR to posi-
tive MR. At T > T*(B), the main contribution in MR
comes from App,(B), and MR reaches its maximum
value. Upon using Eq. (11) and taking into account
that at this point 7' has to be determined by Eq. (9),
T o (By — Be)*/3, we obtain that the maximum value
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p™.(Bg) of MR is p™ (By) o (B — B) /3. Thus,
the maximum value is a decreasing function of By. At
T*(B) < T, MR is a decreasing function of the tem-
perature, and at elevated temperatures MR eventually
vanishes since Apy.(B)/p(T) < 1.

The recent paper [14] reports on measurements of the
resistivity of CeColns in a magnetic field. With increas-
ing field, the resistivity evolves from the T' temperature
dependence to the T'? dependence, while the field depen-
dence of A(B) ~ (M*(B))? displays the critical behavior
best fitted by the function, A(B) « (B — Bg)~ %, with
o ~ 1.37 [14]. All the data are in a good agreement
with the B — T phase diagram given by Eq. (9). The
critical behavior displaying @ = 4/3 [12] and described
by Eq. (8) is also in a good agreement with the data.
Transition from negative MR to positive MR with in-
creasing T was also observed [14]. We believe that an
additional analysis of the data [14] can reveal that the
crossover from T2 dependence of the resistivity to the T
dependence occurs at T o (B — Beo)*/%. As well, this
analysis could reveal supplementary peculiarities of MR.

In conclusion, we have described the behavior of a
highly correlated electron liquid in a magnetic field. The
highly correlated liquid exhibits the strong dependence
of the effective mass M™* on the temperature and the
magnetic field. This strong dependence is of a crucial
importance when describing the B — T phase diagram
and such properties as MR and the critical behavior. We
have also identified the behavior of the heavy fermion
metal CeColn; in magnetic fields displayed in [14] as
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the highly correlated behavior of a Landau Fermi liquid
approaching FCQPT from the disordered phase.
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