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We analyze the recent experimental study by R.J. Epstein et al. [Phys. Rev. B65, 121202 (2002)] on spin
dynamics of semiconductor electrons in the hybrid ferromagnet/semiconductor structure by using a simple

model based on the Bloch equations.

A comparison between the model calculations and the experimen-

tal observations shows that the spin relaxation rate is strongly anisotropic. We interpret this anisotropy as
a manifestation of the exchange interaction between metallic and semiconductor electrons at the ferromag-

net/semiconductor interface.

PACS: 42.50.Md, 72.25.—b, 75.70.—i

In recent years, much interest has been aimed at the
physics of electron spin dynamics in bulk semiconduc-
tors and heterostructures [1]. An understanding of spin
relaxation mechanisms is important because of potential
use of spin degrees of freedom in magnetoelectronics and
quantum computation [2].

A hybrid ferromagnet/semiconductor (F/S) struc-
ture is often considered as a key element of magneto-
electronics. Usually, when considering the transport
of spin-polarized electrons from a ferromagnetic metal
into a semiconductor, it is tacitly assumed that the spin
relaxation rate in the semiconductor is independent of
the proximity of the ferromagnet. In most cases it is
a good approximation, but it is questionable for sam-
ples in which the exchange coupling between metal and
semiconductor electrons reaches a noticeable magnitude.
It is well known that an exchange interaction is able to
provide an efficient channel for the spin relaxation. The
BAP mechanism of the spin relaxation in semiconduc-
tors is the well known example [3].

In the recent experiment [4] it was observed by the
method of time-resolved Faraday rotation that in the hy-
brid F/S structures, namely, Fe/n—-GaAs and MnAs/n—
GaAs, the proximity of the ferromagnetic metal affects
the dynamical behavior of the spin polarization of semi-
conductor electrons. It was found that in an external
in-plane magnetic field a short circularly polarized (CP)
or linearly polarized (LP) pump laser pulse, with en-
ergy tuned near the GaAs band gap, induces the compo-
nent of the spin polarization of semiconductor electrons

Sz (t):
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Sa(t) = Age /™2 cos (wt + @), (1)

where Ay is the amplitude, T is the effective transverse
spin lifetime, w = gup B/h is the Larmor precession fre-
quency, ¢ is the phase of the spin precession and the z
axis is directed along the sample normal. In the case
of CP pump pulse, which creates spin polarized (opti-
cally oriented) along a pump path electrons, the well
known [5] result with ¢ = 0 was reproduced. Although
a LP pump creates spin unpolarized carries, the spin
oscillations given by Eq. (1) with ¢ ~ —90° were also
observed. This phenomenon was qualitatively explained
in Ref. [4], as manifestation of the exchange interaction
between the ferromagnet and semiconductor electrons .
Despite the absence of the spin polarization in the semi-
conductor just after the arrival of a pump pulse, it arises
due to the interlayer exchange interaction and oscillates
with the Larmor frequency w for several nanoseconds
(to be exact, we note that the term “spin interaction”
rather than “exchange interaction” was used in Ref. [4]).

Although the physical origin of the observed effect
was justified in Ref. [4] in sufficient detail, many features
of the effect remain unexplained. First, we should un-
derstand why the oscillation frequency w is determined
solely by the external magnetic field B and unaffected by
the exchange interaction, whereas the amplitude Ay of
the spin oscillations varies (in the case of LP pump) with
the angle a between B and ferromagnet’s magnetization
M as sina. Second, it should be explained why the spin
relaxation time for a LP pump (~ 4 ns) differs from that
for a CP pump (~ 2mns). Finally, the obtained spin re-
laxation times are comparable by the order of magnitude
with those obtained for n-GaAs without ferromagnetic
layer [6]. This looks so that despite the pronounced ex-
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change interaction between the metal and semiconductor
electrons, this interaction has little effect on the spin re-
laxation rate. Of coarse, we keep in mind that the spin
relaxation rate is strongly influenced by impurities and
defects and, as a consequence, is sample dependent, so
that the comparison between different samples should be
made with care. Nonetheless, the experiment [4] raises
a question about the influence of the exchange interac-
tion at the F/S interface on the spin relaxation rate of
semiconductor electrons.

In this paper we consider the spin dynamics of semi-
conductor electrons in the vicinity of the F/S interface
and analyze the experimental observations of Ref. [4] by
using the semi-phenomenological Bloch equations. In
accordance with the conditions of the experiment, we
assume the external magnetic field B and the ferromag-
net’s magnetization M to be parallel to the F/S inter-
face. We choose the z and y axes to be directed along
the interface normal and the magnetization M, respec-
tively (see Ref. [4] for details). The thickness of the
n-GaAs layer (100 nm) in the heterostructure used in
the experiment was much less than the laser wavelength
(~ 820 nm). For this reason, we neglect the variation
of the spin polarization S(z,t) of semiconductor elec-
trons across the layer and replace it some effective value
S(t). Next, we take into account the exchange interac-
tion between the metal and semiconductor electrons by
means of an effective exchange field B, which is par-
allel (or antiparallel) to M and independent of z. As a
consequence of these simplifications, we obtain a model,
in which homogeneous spin polarization S(t) varies un-
der the action of the external magnetic field B and the
exchange field B, from an initial value Sy to the equi-
librium one S, = x(B.; + B)/gus, where x is the mag-
netic susceptibility, g is the electron g factor and up
is the Bohr magneton. This model is rather crude and
can not be applied to the analysis of those properties of
the spin dynamics which depend on the distribution of
the spin polarization across the film (see the discussion
below). However, we believe that some experimentally
observed features of the spin dynamics are determined
mostly by the geometrical characteristics of the system,
such as the relative orientation of the external and ex-
change magnetic fields.

The equation of motion for the spin polarization S(t)
is

dS/dt=QxS—R-(S—8.), (2)
where Q = gup(Be, + B)/h is the vector of the electron
spin precession frequency and R is the relaxation ten-

sor. In Ref. [4] it was shown that the external magnetic
field B is modified by a nuclear hyperfine field B,,. Be-

cause B,, is parallel to B, we assume that the nuclear
field is included in B. The form of the relaxation ten-
sor is crucial for the following consideration. We choose
the relaxation tensor R to be diagonal for a given co-
ordinate system: R;; = 0;;I';. This assumption physi-
cally means that the exchange field B, has much larger
influence on the spin relaxation than the external mag-
netic field B. We shall justify this by comparison of our
model calculations with the experimental observations.
It might seem that the anisotropy of the spin relaxation
is redundant here, since the solution of Eq. (2) for S, (%)
with the isotropic relaxation tensor R;; = 0;;/T> has
the required form, Eq. (1). However, for such solution
w = Q « |B + Bg,| that contradicts to the experiment.
Moreover, as we shall show, for a LP pump (So = 0)
and isotropic tensor R, Eq. (2) gives Sz(t) = 0. Thus,
the anisotropy of the spin relaxation is essential for the
explanation of the experimental observations.

We are interested in the experimentally mea-
sured component of the spin polarization S;(t). The
anisotropy of the spin relaxation somewhat complicates
the solution of Eq. (2) for S, (t), which differs now from
Eq. (1) and has the form

Se(t) = CreMt + Creet + Cye?, (3)

where A; are the eigenvalues of the matrix H;; =
= eirjQ — I'idij, es; is the unit antisymmetric ten-
sor of rank three. The coefficients C; should be deter-
mined from the initial conditions for the spin polariza-
tion S(t). Expression (3) for S;(¢) describes both LP
and CP pumps, with different initial conditions in either
case and, as a consequence, with different coefficients
C;. Assuming S,(0) = Sy, and Sy(0) = S,(0) = 0 we
obtain

Cl — SO,a;Dl + QzSe,y(Fy - Fz)
(A2 = M)Az = A1)

(4)
where
Dy =T2 — Q% +To(Az + A3) + A2)s. (5)

The coefficients C> and C3 can be obtained from Egs. (4)
and (5) by the cyclic permutations of the indices 1,2 and
3. The eigenvalues A; can be determined from the third
order algebraic equation:

A+Te)A+Ty)A+T.) +Q2(A+T,) +
Q2(A+T,) =0. (6)

Analytical expressions for the eigenvalues \; are rather
cumbersome and therefore not given here. In the follow-
ing, we shall calculate \; approximately for particular
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relations between the spin relaxation rates I'; which are
relevant to the experiment.

As is seen from Eq. (4), there are two physically dif-
ferent sources for the nonzero spin polarization Sg(t).
The first one is well known and originates from the ini-
tial spin polarization (optical orientation) Sy , created
by a pump pulse. This is the case of CP pump. The
second source is not related with the optical orientation
and relevant to a LP pump. It comes into play when
the external magnetic field is not parallel to the mag-
netization (2, # 0) and, besides, the spin relaxation
in the interface plane is anisotropic, that is, I'y # I'.
Physically, this means that under these conditions, the
emerging spin polarization S(t) is not parallel to €, thus
creating S;(t). Our primary interest here lies in the case
of LP pump, since it reveals some important properties
of the exchange coupling between the ferromagnet and
the semiconductor.

A distinctive feature of the spin oscillations induced
by LP pump is the dependence of their amplitude Aq
on the angle a between the external magnetic field B
and the exchange field Bex. It was found experimen-
tally that Ay o sina. Our model calculations also pre-
dict some dependence of Ag on a. As is seen from
Eq. (4), the form of this dependence is determined by
the product Q.S 4, which, in turn, depends on the re-
lation between the external magnetic field and the ex-
change field. Since 2, x sina and the same angular
dependence was observed for S,(t) in the experiment,
we conclude that Se,y = x(Beg + B cos ) must be inde-
pendent of o (within the experimental accuracy). This
occurs only if B., > B. Thus, the observed dependence
of S;(t) on a indicates that the exchange field is much
larger than the external magnetic field ~ 1 T, which was
used in the experiment.

Now we turn to the temporal behavior of S;(¢). As
we have already note, in general case Eq. (3) can not
be reduced to the decaying oscillations, Eq. (1), ob-
served in the experiment. However, we shall show that
under special relations between the parameters of the
considered system, Eq. (3) leads to almost the same
temporal behavior of S, (t) as Eq. (1) and, at the same
time, gives true dependence of the Larmor frequency
and the amplitude of the spin oscillations on the exter-
nal magnetic field. Let us consider this point in more
detail. As we consider the oscillatory behavior of the
spin polarization S, (t), two (say, A1 and A2) of the three
eigenvalues in Eq. (3) must be complex and inevitably
complex conjugate, Ay = A3. Taking into account that
C1 = C3, we conclude that the first two terms in Eq. (3)
give the decaying oscillations similar to Eq. (1) with
1/T2 = —Re )\1 = —Re )\2, w = Im )\1 = —Im )\2
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and ¢ = argC;. In order for Eq. (3) can be reduced
to Eq. (1), we must have a reason to neglect the third
term in Eq. (3). This is possible in two cases. The
first one is trivial and takes place if C5 = 0. One can
easily see from Eqs. (4)—(6) that this occurs if the in-
plane relaxation is isotropic (I'y = I';). As we have
already noted, this case is not relevant to the experi-
ment. Another situation, when the third term in Eq. (3)
can be neglected, occurs if |Az| > 1/T>. Then, this
term rapidly approaches to zero with time. In order to
find the conditions under which Az is large, we should
analyze the dependence of the eigenvalues A; on the pa-
rameters I'; and ; in case of strong anisotropy of the
spin relaxation. To this end we compare the behavior
of the terms in equation Eq. (6) when I', increases. We
notice that the second term in Eq. (6) can be neglected
when ', — oo and then )\1(0) = X\i(T, — o0) are given
by

1,2 ~

0  _TatTy ii\/gg _ (@ -Ty)
2 4 (7)
)\go) ~—T,.

Thus, for a large I', we obtain \; with the required prop-
erties: A3 is large and the Larmor frequency w =~ 2,
B,. It is this dependence of w on the external mag-
netic field was observed in the experiment. Note that
the effective spin relaxation rate 1/T5 = (I'y; + T'y)/2
is independent of T',. It follows from Eq. (4) that the
coeflicients Cy and Cy becomes purely imaginary when
A3 increases. Consequently, Eq. (3) reduces to Eq. (1)
with ¢ = £90°, where the sign, plus or minus, depends
on the sign of the exchange field, i.e., on whether the
exchange coupling at the interface is ferromagnetic or
antiferromagnetic.

In order to obtain restrictions, imposed on the pa-
rameters I'; and (2;, under which A\; ~ )\50) we estimate
corrections d\; to )\50) for large but finite I', and require
that [0 < |)\£0)|. Substituting A; = )\1(0) + d); into
Eq. (6) and assuming Q, > I';, ~ T’y we obtain d\3 =
= —6\12 > QZ/I‘Z. The condition [dAsz]| < |A§0)| gives
T, > Q, but from the second condition [0\ 2| < |/\§?%
we obtain the more strong inequality T'; 3> Q2 /T,. The
last relation is a strict mathematical definition of the
term “the strong anisotropy of the spin relaxation” for
a given problem.

What temporal behavior of S;(t) do we obtain if Ty
rather than T', increases? Interchanging the subscripts
y and z in Egs. (7) we again obtain Eq. (1), but with
the Larmor frequency w = Q, o« B¢, + By. This is
inconsistent with the experiment, where w x B,.



220 V. N. Gridnev

Thus, the observation of the oscillations of the spin
polarization for a LP pump, given by Eq. (1), indi-
cates that the relaxation rate I', significantly exceeds
I'; and I'y. This fact is not evident from the experimen-
tal data, since the rate of decay of the Faraday rotation
1/T> = (Ty +Ty)/2 is independent of I',. Hence, the
increase of I', leaves T» unchanged.

To get a more quantitative characterization of the
spin relaxation anisotropy we consider a set of inequal-
ities which are satisfied by T'; and Q;: (i) T, > ij/l"z,
(i) Qy > Q,, and (iii) w > 1/T5. The first of these
inequalities allows us to reduce Eq. (3) to Eq. (1), the
second is obtained from the fit of the angular depen-
dence of S, (t) and the third follows from the experiment,
where w ~ 10 ns™! at B = 0.25 T and 1/T» ~ 0.25
ns~!. Since the restrictions, imposed on the parame-
ters I'; and €Q;, are determined by the three inequalities
(1)-(iii), the lower bound for the relaxation rate I', is al-
lowed to vary over the whole range, which we estimate
as ~ (102 =+ 10%) /T, and the corresponding range for the
relaxation time T, ~ 0.01 + 1 ps.

The physical picture of the motion of the spin po-
larization is very simple. When T, is large, S, rapidly
approaches to its equilibrium value S , due to the large
damping. This means that S(¢) precesses around the z
axis. The frequency of such precession is determined by
the z-component of the magnetic field and independent
of the exchange field.

So far we considered the case of LP pump. The case
of CP pump can be considered quite analogously. Now
the coefficients C; in Eq. (3) should be calculated tak-
ing into account that the initial spin polarization S , is
nonzero, since a CP pump creates spin polarized elec-
trons. Assuming again the validity of Egs. (7), we ob-
tain that S,(t) is given by Eq. (1) with the phase ¢
depending on the magnitude of the initial spin polariza-
tion Sp . When Sy, increases, then ¢ — 0, and Eq. (1)
reproduces the well known decaying spin oscillations in
a transverse magnetic field [5]. It is these oscillations
were observed in Ref. [4] for a CP pump. Though in the
case of CP pump Eq. (1) follows from the Bloch equa-
tion for the isotropic in-plane relaxation, the frequency
w remains to be dependent on the anisotropy. It was
found in the experiment that the oscillation frequencies
are the same for both pump polarizations. This means
that the anisotropy of the spin relaxation is equally es-
sential for the explanation of the experimental observa-
tions for both pump polarizations.

If we compare the relaxation times for LP and CP
pumps, we see a distinction between our model calcula-
tions and the experimental data. Our calculations give
equal relaxation times T = 2(T', + I'y)~! for LP and

CP pumps, while the relaxation times measured experi-
mentally differ: T = 4 ns for a LP pump and 75 = 2 ns
for a CP pump. A possible reason for this discrepancy
is the inhomogeneity of the spin polarization combined
with the different origin of the spin polarization for LP
and CP pumps. As opposed to the case of LP pump, the
spin polarization for a CP pump exists and without the
exchange coupling due to the optical orientation. This
leads to the different profiles of S, (z,t) across the film
for LP and CP pumps. Since the exchange coupling de-
creases with distance from the interface, the variation
of S;(z,t) with & affects the relaxation rates and, in
turn, leads to the different 75 for LP and CP pumps.
Our model fails to describe this effect, since it does not
take into account the spatial variations of the exchange
coupling and the spin polarization.

In conclusion, we have analyzed experimental results
of Ref. [4] on the spin dynamics in the hybrid F/S struc-
ture by using semi-phenomenological Bloch equations.
It has been shown, that the qualitative agreement be-
tween the model calculations and the experimental ob-
servations can be achieved only under certain conditions
imposed on the parameters of the system. First, we have
shown that the exchange field, representing the effect
of exchange coupling between the ferromagnet and the
semiconductor on semiconductor electrons, significantly
exceeds the external magnetic field. Second, the spin re-
laxation rate of semiconductor electrons near the F/S in-
terface is strongly anisotropic. The spin relaxation rate
depends on the orientation of the spin polarization in the
interface plane and reaches its maximum when the spin
polarization is perpendicular to the ferromagnet’s mag-
netization. In a sense, this anisotropy is hidden, since it
weakly affects the rate of decay of the Faraday rotation
beating and manifests itself only through the form of the
beating. For this reason we have obtained only a rough
estimate of the anisotropy. The maximum value of the
spin relaxation rate exceeds the bulk one approximately
by a factor of 102 < 10%. The corresponding relaxation
times are of the order of 0.01 + 1 ps. Such fast spin
relaxation is typical for magnetic semiconductors. This
indicates that the exchange coupling between the ferro-
magnet and the semiconductor provides an additional
channel for the spin relaxation. We may speculate that
the anisotropy of the spin relaxation is related with the
anisotropy of the surface spin excitation spectrum of the
ferromagnet. This point requires an additional theoret-
ical and experimental investigations.
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