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An expression is obtained for the real and imaginary parts of the transverse
acoustic impedance of a normal Fermi liquid. The results are compared with
available experimental data.

PACS numbers: 67.50.—b

The Fermi-liquid parameters for helium-3 are such that transverse zero-
sound can propagate in it in accordance with the Landau theory. i1 Experimen-
tal observation of this sound mode was recently reported. (21 In the cited study,
besides the establishment of the very fact of the propagation of transverse oscil-
lations, they measured the acoustic impedance Z = M n,/u? for the transverse
oscillations of a solid wall in liquid helium-3. Here II;;, is the momentum-flux
tensor, u; is the velocity of the wall, and », is the normal to it. The qualita-
tive agreement between the temperature dependences of Z at different frequen-
cies with Bolton’s theoretical calculation ! was regarded by the authors of B2}
as an argument that the transverse oscillations observed by them are actually
zero sound, In fact, however, Bolton did not take into account the Fermi-liquid
interaction, without which zero sound does not exist at all,

In this article we present the results of a calculation of the transverse ac-
oustic impedance of helium-3 in the high-frequency region, i, e., when the
oscillation frequency «» and the time T between the collisions of the quasipar-
ticles satisfy the strong inequality wT>> 1, with the Fermi-liquid effect taken
into account, provided that the function F{8), which describes in the Landau
theory the interaction of the quasiparticles, can be approximated by two spheri-
cal harmonics: F(6) =F,+ F;cosf. We do not present here the calculations
themselves, since they duplicate mainly Sec. 2 of the article by Bekarevich
and Khalatnikov "7 dealing with the Kapitza jump at the interface between
helium-3 and a solid, The formula obtained there for the real part of the
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transverse acoustic impedance can unfortunately not be used directly, for at
the time of the investigation in ™! it was assumed that F; <6 and transverse
zero sound cannot propagate in helium-3. The existence of zero sound leads to
the appearance of a pole in the Laplace transform of the distribution function,
and consequently to an additional term in the acoustic impedance, The charac-
ter of the necessary changes is clear from that section of the article ™1 which
pertains to longitudinal zero-sound (see also B}, The quasiparticle collisions,
just as in [5], are taken into account in the 7 approximation.

Using the notation of ©?), Z=R+{X, and retaining only the principal terms in
1/wT, we have
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Here p is the density of the liquid, p, is the Fermi momentum, m is the mass
of the helium-3 atom, n and ¢ are respectively the real and imaginary parts of
the velocity of the transverse sound in units of Fermi velocity (for details
see (5}
1-u?)
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the arctangent is defined in the interval (0,r) and

! u(l=u?)
J— du. 4
¢ u?(1-u?)2(n?/4) + [(1 - u?)(1 - warthu) - (F -6)/3F,12

Tf

The coefficient ¢ in (1) and (2) stands for the fraction of the quasiparticles that
experience diffuse scattering by the wall; it is understood that the fraction
1-gq is specularly scattered. The solution in U] pertains to pure diffuse reflec-
tion, i,e., g=1. However, by virtue of the linearity of the problem, and also
since tangential oscillations do not excite oscillations in the liquid in the case
of specular reflection, the allowance for the possibility of specular reflection
of the quasiparticles reduces to the introduction of a coefficient.,

The table lists the numerical values of the quantities contained in (1) and (2)
for certain values of Fy at g=1. The calculations were not made for values of

TABLE I,

P, bar F, 7-1 lorl ) v |R/p, er/p

103 em/sec | cmjsec

9 10.15 | 0.093 | 0.345 0.346 0.074 2.28 |- 664
18 11.79 | 0.136 | 0,391 0.357 0.063 2,21 |- 683
23 12,95 | 0.166 | 0.417 0.362 0.057 2.24 |- 692
33 15.31 | 0.227 | 0.468 0.408 0.047 2.32 |-861
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Fy close to 6, inasmuch as the approximation of F(8) by two terms may turn
out to be insufficient in this region. It follows from the paper by Dyugaev, [§],
however, that the next term in the expansion of (6) can be taken into account,
and in those cases when the first two harmonics in the expansion of F(8) do not
suffice, it is necessary to take into account a large number of harmonics
simultaneously. Allowance for only one of the next higher terms does not lead
to a more accurate result.

The third row of the table corresponds (see 7)) to a pressure of 23 bar, for
which experimental data are available. 21 The value of R is in good agreement
with experiment, and this can be regarded as an indication that the quasipar-
ticle scattering is close to diffuse, A quantitative comparison for X is impos-
sible because of the uncertainty of 7. Let us discuss qualitatively the behavior
of X. It is known that 7 T-2 where T is the temperature. From (2), (4), and
formula (21) of ¥ it follows that in the high-temperature region we have X
« 7%, In the hydrodynamic region, where the tangential oscillations of the wall
excite the usual viscous wave, we have X< V7. Thus, the X(7) corresponding
to different frequencies should intersect at w7~ 1. This intersection does in-
deed take place for the curves of %! corresponding to the frequencies 60 and
36 MHz, On the other hand, the behavior of the curve for 108 MHz cannot be
explained by the advanced arguments,

In the experiments of (21 they failed also to investigate another interesting
frequency and temperature region, T S 7%w/2r, in which a quantum analysis is
essential, Using Landau’s result 7 for the damping of sound in the quantum
region, we conclude that the necessary modification of the obtained formulas
reduces to the substitution of 1/7 — [1+ (Jiw/27T)?l/7T, i.e., dependence of the
imaginary part of the impedance on frequency and temperature is described by
the formula

TY %k
X~ — P +(om 2] :
@ 2aT
from which it is seen that the X(7) curves corresponding to different frequen-
cies should again intersect at T < %iw/2r. For the frequencies used in [2], the
quantum region corresponds to temperatures lying above the temperature of the

transition of helium-3 into the superfluid state, but the quantum region is per-
fectly attainable already at 300 MHz,

We note in conclusion that besides the sound, the single-particle excitation is
scattered by a tangentially-vibrating wall make an appreciable contribution to
the acoustic impedance, and the character of the dependences of X and R on T
and w is the same for both contributions, so that measurement of Z can serve
as an argument favoring the existence of transverse zero sound only if the ex-
perimental values are in quantitative agreement with the theoretical ones.

The author thanks A. M. Dyugaev for a useful discussion,
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