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 2010 July 10Atomic levels in superstrong magnetic �elds and D = 2 QED ofmassive electrons: screeningM. I.VysotskyInstitute for theoretical and experimental physics, Moscow, RussiaSubmitted 31 May 2010The photon polarization operator in superstrong magnetic �elds induces the dynamical photon \mass"which leads to screening of Coulomb potential at small distances z � 1=m, m is the mass of an electron. Wedemonstrate that this behaviour is qualitatively di�erent from the case of D = 2 QED, where the same formulafor a polarization operator leads to screening at large distances as well. Because of screening the ground stateenergy of the hydrogen atom at the magnetic �elds B � m2=e3 has the �nite value E0 = �me4=2 ln2(1=e6).1. Introduction. The Larmour radius of the elec-tron orbit aH = 1=peB is much smaller than Bohratomic radius aB = 1=me2 for homogeneous magnetic�elds B � m2e3 (we are using Gauss system of units,where e2 = � = 1=137; also in all formulas ~ = c = 1).It is natural to look for the atomic energy levels in suchstrong magnetic �elds studying the in
uence of Coulombpotential on the electrons occupying Landau levels [1].A strong magnetic �eld con�nes an electron in the trans-verse direction while in the longitudinal direction anelectron is bound by the weak Coulomb �eld of a nucleus.The cigar-shape wave function of an electron is formedwith transverse size which equals Larmour radius andlongitudinal size which is by ln(a2B=a2H) � ln(B=m2e3)smaller than Bohr radius. The ground state energy islarger than Rydberg constant by the square of the samelogarithm: E0 = �(me4=2) ln2(B=m2e3). One can eas-ily get this logarithmic factor from the fact that in one-dimensional Coulomb potential energy diverges logarith-mically at small distances. The divergency is regularizedat the longitudinal distances which equals aH , whereone-dimensional motion converts to a three-dimensionalone. Atomic levels in such strong magnetic �elds werefound numerically in [2] (see also [3, 4]).Our purpose is to understand the behaviour of the en-ergy levels with the growth of a magnetic �eld. The pointis that at superstrong magnetic �elds B & m2=e3 the po-larization operator insertions into the photon propaga-tor induce the dynamic photon \mass" m2
 � e3B [5, 6].One would expect that the photon mass should screenCoulomb potential and shift energies of the atomic levelsfound in tree approximation.Dirac equation spectrum in a constant homogeneousmagnetic �eld looks like [7]:"2n = m2 + p2z + (2n+ 1)eB + �eB; (1)

where n = 0; 1; 2; :::, � = �1 and the �eld is directedalong axis z1). In the magnetic �elds we are interested in"n & m=e, and electrons are ultrarelativistic. The onlyexception is the lowest Landau level (LLL) which hasn = 0, � = �1. The energy of LLL electron equals itsmass for pz = 0 and the consideration of the nonrelativis-tic electron motion along z axis is selfconsistent. LLL isinteresting both practically and theoretically. An analogof the critical electric �eld Ecr = m2=e is the magnetic�eld B0 = m2=e = 4:4 � 1013 gauss. Two orders largersuperstrong �elds B & m2=e3 can exist at special neu-tron stars named magnetars. The temperature of anouter magnetar layer is not enough to populate the ex-cited Landau levels and one can observe the transitionsamong the states to which LLL is splitted at the electric�eld of the nucleus. Freezing of the ground state energyin the superstrong magnetic �elds discussed in the pa-per leads to the upper bound on the spectra of photonsradiated from magnetars2). To study the stability of thehuge magnetic �elds [9] one should also know the energyof the ground state as a function of a �eld.So we are studying the energies of the states to whichLLL splits in the presence of an atomic nucleus.Since the electron at LLL moves along z axis we willstudy in section 2 QED at D = 2: the behaviour ofelectrons in two-dimensional space-time. The couplingconstant g has dimension of mass, so Coulomb poten-tial as a function of jzj depends on two dimensionfullparameters: g and electron mass m. We will obtain theapproximate analytical formula for Coulomb potentialin d = D � 1 = 1 which takes into account the photonpolarization operator. We will see that for large g (orsmall m) g � m Coulomb potential is screened.1)This spectrum with the substitution of 2n+1+� by 2j, j = 0,1, 2,... was found by I.I. Raby [8].2)I am grateful to S.I. Blinnikov for the discussions of magnetarphysics.22 �¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 1 { 2 2010



Atomic levels in superstrong magnetic �elds and D = 2 QED : : : 23In section 3 we will consider the physical case, D = 4QED. The analog of the coupling constant squared g2 inthe real world is the product e3B. The polarization oper-ator in the magnetic �elds B � m2=e at k2k(� k2z)� eBpractically coincides with the one obtained in section2 [10]. Nevertheless the screening at large distancesjzj � 1=m does not occur: at jzj � 1=m we get a purelyCoulomb potential �(z) = e=jzj. The screening occursat small distances, and its in
uence on the ground stateenergy is determined in section 4. The results similarto those presented in sections 3 and 4 were obtained in[11] with the help of the numerical calculations.2. D = 2 QED: screening. Coulomb poten-tial in the coordinate space could be obtained by theFourier transformation of the 00-component of the pho-ton propagator in momentum representation at momen-tum k� = (0; kk). We designate the space-like compo-nent of momentum by kk, which will be natural in thecase d = 3, see below. The series of Feynman diagramsfor the photon proparator is shown in Fig.1 which cor-responds to the following equations:�(�k) � A0(�k) = 4�g�k2 ; � � A0 = D00+D00�00D00+:::Summing the series we get:�(k) = � 4�gk2 +�(k2) ; ��� � �g�� � k�k�k2 ��(k2) ;(2)where ��� is the photon polarization operator at oneloop. Instead of calculating the fermion loop we cantake an expression for � obtained in the dimensional
...+++Fig.1. Modi�cation of the Coulomb potential due to thedressing of the photon propagatorregularization method [12], substitute D = 2 in it anddivide it by two, because in two dimensions the tracesof 
-matrices are proportional to 2 instead of 4:�(k2) = 4g2 " 1pt(1 + t) ln(p1 + t+pt)� 1# �� �4g2P (t); (3)t � �k2=4m2 { a well-known result; for example see[10]3).3)It was demonstrated in [10] that in strong magnetic �elds pho-ton polarization operator is dominated by the electron from LLLand is essentially given by the D = 2 expression.

Taking k = (0; kk), k2 = �k2k for the Coulomb po-tential in the coordinate representation we get:�(z) = 4�g 1Z�1 eikkzdkk=2�k2k + 4g2P (k2k=4m2) ; (4)and the potential energy for the charges +g and �g is�nally: V (z) = �g�(z): (5)The calculation of �(z) would be simpli�ed if wewere interested in the correction to the potential � g2.Expanding denominator of (4) and taking into accountthe �rst two terms we would deform the integration con-tour in the plane of complex kk in such a way, that theintegration result will be given by the residue at kk = 0and integration of discontinuity of P (k2k) which equalsthe imaginary part of it. This is analogous to what isdone in the textbook [13] when the Uehling{Serber cor-rection to Coulomb potential in d = 3 is calculated.However to obtain the photon mass we should take intoaccount the whole in�nite series { mass is not generatedin a �nite order of the perturbation theory. Discontinu-ity of the integrand of (4) is not equal to ImP and thesimpli�cation of the integration does not occur.Asymptotics of P (t) are:P (t) = ( 23 t ; t� 11 ; t� 1 : (6)Let us take as an interpolating formula for P (t) thefollowing expression:P (t) = 2t3 + 2t : (7)We have checked that the accuracy of this approxima-tion is not worse than 10% for the whole interval of tvariation, 0 < t < 1. Substituting (7) in (4) we easilyperform the integration:�(z) = 4�g 1Z�1 eikkzdkk=2�k2k + 4g2(k2k=2m2)=(3 + k2k=2m2) == 4�g1 + 2g2=3m2 1Z�1 " 1k2k + 2g2=3m2k2k + 6m2 + 4g2#�� eikkz dkk2� = 4�g1 + 2g2=3m2 �� "�12 jzj+ g2=3m2p6m2 + 4g2 exp(�p6m2 + 4g2jzj)# : (8)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 1 { 2 2010



24 M. I.VysotskyIn the case of heavy fermions (m � g) the potential isgiven by the tree level expression; the corrections aresuppressed as g2=m2:�(z) ����� m� g = �2�gjzj�1 +O� g2m2�� : (9)In case of light fermions (m � g) the second termwhich describes Yukawa potential in d = 1 dominates atthe distances jzj < (1=g) ln(g=m). At larger distancesthe �rst term dominates; a coupling constant is sup-pressed by the factor 3m2=2g2 with respect to the treelevel expression:�(z) ����� m� g =8<: �e�2gjzj; z � 1g ln � gm��2�g �3m22g2 � jzj; z � 1g ln � gm� :(10)The dependence of the potential energy of the twoopposite charges (5) on the distance between them isshown in Fig.24).
V

zFig.2. The potential energy of two opposite charges inD = 2 QED in the case g � m. The dashed line showsV (z) for g� mIn case m = 0 a linear term disappears and thepotential is determined by the photon with the massm
 = 2g exchange (the Schwinger model: D = 2 QEDwith massless fermions [14]). For massive fermions atthe distances larger than ln(g=m)=g we obtain a linearpotential with the coupling constant diminished by thefactor 3m2=2g2 .3. D = 4 QED in a strong magnetic �eld:screening at jzj < 1=m. In order to derive the poten-tial of the pointlike charge in the realistic case of D = 4QED with d = 3 space-like dimensions in the externalmagnetic �eld we should know the expression for a po-larization operator in this �eld. There are many paperswhere the polarization operator in the external homoge-neous �eld was calculated, see [15 { 17]. The expression4)I am grateful to A.V. Smilga who noted privately that in thecase of light fermions in D = 2 QED a massive pole in a photonpropagator emerges.

for the polarization operator radically simpli�es in themagnetic �eld which is so strong, that the Landau levelsspacing is considerably larger than the electron mass,B � B0 = m2=e and at the longitudinal (parallel tothe magnetic �eld) photon momentum k2k � eB, seeEqs.(1.19), (1.22) and (5.2) in [17]. With the help ofthese formulas we get:�(k) = � 4�ek2 + �2(k2) = (11)4�e(k2k+k2?) �1+ �3� ln � 2eBm2 ��+2e3B� exp�� k2?2eB�P � k2k4m2� ;where k = (0; kx; ky; kz), k2? = k2x + k2y, kz = kk andthe magnetic �eld is directed parallel to the z axis. Thisformula is very similar to the analogous formulas fromthe previous section, see Eqs. (2), (3). The di�erenceis in an extra small term � � ln(eB=m2), which we willnot take into account in the future consideration, andin the factor 2e3B=�exp�� k2?2eB� which substitutes 4g2.The dependence of function P on k2k is the same as thatin the case of D = 2 QED. There is also an extra termk2? in the denominator and to obtain the potential in thecoordinate representation we should integrate over k? aswell.With the help of interpolating formula P (t) from sec-tion 2 we obtain: �(z) = 4�e� (12)Z eikkzdkkd2k?=(2�)3k2k+k2?+ 2e3B� exp(�k2?=(2eB))(k2k=2m2)=(3+k2k=2m2) ;where the integration is performed in the cylindrical co-ordinates and we are looking for the potential along axisz, since it is the potential which bounds an electron inthe atom.We manage to �nd the asymptotic behaviour of �(z)for z much larger and much smaller than Compton wavelength of the electron. For large distances jzj � 1m inthe integral (12) the region jkkj � m is important andfor the magnetic �eld B � B0 we get k2k � eB and theexpression for P we are using is correct. For small jkkjwe get: �(z) ����� jzj � 1m == 4�e Z eikkzdkkd2k?=(2�)3k2k h1 + e3B3�m2 exp�� k2?2eB�i+ k2? : (13)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 1 { 2 2010



Atomic levels in superstrong magnetic �elds and D = 2 QED : : : 25It is convenient to integrate over kk closing the in-tegration contour in an upper (lower) semiplane of thecomplex kk and takingkk = ik?=r1 + e3B3�m2 exp(� k2?2eB ):In this way we obtain:�(z) ����� jzj � 1m == e 1Z0 exp ��k?jzj=r1 + e3B3�m2 exp�� k2?2eB� �r1 + e3B3�m2 exp�� k2?2eB� dk?:(14)The integral over k? converges at k? . pe3B, thatis why the residue was situated at kk � m, where theapproximate formula for P we used is valid. At the men-tioned values of k? the exponent inside the square rootcan be substituted by one and �nally we obtain:�(z) ����� jzj � 1m = ejzj ; V (z) ����� z � 1m = � e2jzj (15){ the usual Coulomb potential. Strong screening whichwe obtain in d = 1 at the distances jzj � 1=m in arealistic case d = 3 does not occur.To �nd a potential at short distances jzj � 1m let ussubstitute m = 0 in (12):�(z) ����� jzj � 1m =4�eZ eikkzdkkd2k?=(2�)3k2k+k2?+ 2e3B� exp�� k2?2eB�== e 1Z0 exp��rk2? + 2e3B� exp��k2?eB�jzj�rk2? + 2e3B� exp��k2?eB� k?dk?: (16)Calculating the potential at jzj � 1=peB we observethat the integral over k? is determined by the integrandat k? � peB. So we took residue at kk � k? � peBand the approximate expression for P was used in thedomain where it is valid. Performing integration overk? we get:

�(z) ����� 1m � z � 1peB == e 1Z0 exp��qk2? + 2e3B� jzj�qk2? + 2e3B� k?dk? == ejzjexp �r2e3B� jzj! ;V (z) = � e2jzjexp �r2e3B� jzj! : (17)At the distances which are smaller than Compton wavelength we obtain screening of the potential which cor-responds to the photon mass m2
 = 2e3B=�. Coulombpotential is screened for the superstrong magnetic �eldsB > m2=e3.4. The energy of the ground state of the hy-drogen atom in the superstrong magnetic �eldsB > m2e=e3. According to papers [2, 3] in the magnetic�elds B > m2e3 the ground state energy of the hydro-gen atoms equals E0 = �(me4=2) ln2(B=m2e3) and atB = m2=e3 it equals Ecr = �(me4=2) ln2(1=e6). Forlarger magnetic �elds the screening of the Coulomb po-tential at the distances jzj . 1m occurs. Let us demon-strate that the screening leads to the freezing of the en-ergy { it does not diminish with the growth of the mag-netic �eld.To �nd the ground state energy we use the followingequation [3]: E0 = �2m0@ aBZaH U(z)dz1A2 : (18)We split the integral into two parts: from 1=m to aB ,where the screening is absent (large z),I1 = � aBZ1=m e2z dz = �e2 ln �1=e2� (19)and from the Larmour radius aH = 1=peB to 1=m,where the screening occurs (small z):I2 = � 1=mZ1=peB e2z exp(�pe3Bz)dz = �e2 ln(1=e): (20)Finally we get:E0 = �me4=2 ln2(1=e6) = �me4=2� 220 (21)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 1 { 2 2010



26 M. I.Vysotskyand the energy level freezing occurs. The numerical es-timates of Shabad and Usov give 73:8� 4 � 295 insteadof 220, see Eq. (14) in [11].When B increases further Larmour radius ap-proaches the size of a proton. This happens at 1=peB �� 1=m�, m� = 770 MeV, B � 1020 gauss. Taking intoaccount the proton formfactor we get that for larger�elds I2 does not contribute to the energy, factor 220in (21) should be substituted by 100: the ground levelgoes up.Without screening I = �e2 ln(aB=aH), E0 == �(me4=2) ln2(B=m2e3) as it was stated in the be-ginning of this section.5. Conclusions. The photon polarization operatorleads to modi�cations of the atomic energy levels. Thefamous example is its contribution to the Lamb shift,the di�erence of the energies of 2s1=2 and 2p1=2 levels ofhydrogen. They are numerically small loop correctionsto the values of energies determined by the tree level po-tential. The role of the photon polarization diagram inthe superstrong magnetic �elds B > m2=e3 = 6:2 � 1015gauss is qualitatively di�erent. It determines the behav-iour of the ground state energy: the formula obtainedat tree level becomes invalid and the growth of the cou-pling energy with B terminates at B � m2=e3. Screen-ing of Coulomb potential should be more important forthe energies of even excited states which are more sen-sitive to the shape of the potential at small distances[18]. Degeneracy of even and odd excited states in thelimit B =)1 is not lifted by the screening. We studythe analogy of the electric potential in d = 1 QED withmassive electrons and in d = 3 QED in strong magnetic�elds B > B0 = m2=e which originates from the coin-cidence of the polarization operators in these cases. Asimple analytical expression which equals the polariza-tion operator with 10% accuracy enables us to obtainan approximate formula for the electric potential of thepoint charge in d = 1 QED with massive fermions andasymptotics of the potential in d = 3 QED. In d = 1QED for a coupling constant g larger than a fermionmass m a tree level formula is modi�ed at jzj > 1=g.In d = 3 QED a tree level formula is modi�ed at thedistances 1=m > jzj > 1=pe3B while at large distancesjzj > 1=m Coulomb law is valid.Analogous results for D = 4 were obtained in [11].The other aspect of the Coulomb potential in thestrong magnetic �eld is investigated in paper [19]: itis supposed that fermions obtained their mass due to amagnetic �eld (dynamical fermion mass).
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