For authors
Submission status

Archive (English)
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
VOLUME 92 (2010) | ISSUE 3 | PAGE 162
Nonlinear interfacial waves in a constant-vorticity planar flow over variable depth
Exact Lagrangian in compact form is derived for planar internal waves in a two-fluid system with a relatively small density jump (the Boussinesq limit taking place in real oceanic conditions), in the presence of a background shear current of constant vorticity, and over arbitrary bottom profile. Long-wave asymptotic approximations of higher orders are derived from the exact Hamiltonian functional in a remarkably simple way, for two different parametrizations of the interface shape.