
Pis'ma v ZhETF, vol. 92, iss. 4, pp. 219 { 225 c 2010 August 25Renormalization group improved black hole space-time in large extradimensionsT.Burschil+�, B.Koch�1)+Institut f�ur Theoretische Physik, Johann Wolfgang Goethe - Universit�at, D-60438 Frankfurt am Main, Germany�Departamento de F��sica, Ponti�cia Universidad Cat�olica de Chile,4860 Santiago, ChileSubmitted 31 May 2010By taking into account a running of the gravitational coupling constant with an ultra violet �xed point,an improvement of classical black hole space-times in extra dimensions is studied. It is found that the thermo-dynamic properties in this framework allow for an e�ective description of the black hole evaporation process.Phenomenological consequences of this approach are discussed and the LHC discovery potential is estimated.1. Introduction. Models with extra spatial dimen-sions o�er an elegant solution to the hierarchy prob-lem [1, 2]. In the case of [1] this is achieved by ban-ning all standard model particles and forces onto a 4-dimensional subspace, while gravity can propagate alsointo d additional spatial dimensions. In order to keepthe model consistent with todays gravity experimentsthe additional dimensions are assumed to be compacti-�ed in a small volume Vd. By this construction the mea-sured gravitational coupling (or equivalently the PlanckmassMPl) can be explained by a fundamental massMfwhich might be as low as a few TeV. Since this wouldbe much closer to the electro-weak scale, such modelsgive a possible solution of the hierarchy problem. Therelation M2Pl = VdMd+2f (1)connects these two couplings via the volume Vd whichis spanned by the extra dimensions. In a world withextra dimensions and a gravitational coupling in a TeVrange colliders like the LHC could create tiny black holes(BH) [3 { 8]. The line element of a higher dimensionalspherically symmetric black hole is given by [9]ds2 = f(r)dt2 � f�1(r)dr2 � r2d
d+2; (2)with f(r) = 1�Rd+1H =rd+1: (3)The event horizon RH depends on the black hole massM and the universal gravitational coupling GRd+1H = 16�GM(d+ 2)Ad+2 ;1)e-mail: bkoch@�s.puc.cl

where Ad+2 = 2� d+32� �d+32 �marks the surface of a d + 3 unit sphere. Please note,that there are di�erent de�nitions of the higher dimen-sional coupling constant G. We use the de�nition of [6].For more discussion and other de�nitions see [5]. By re-de�ning the coupling in terms of the fundamental massMd+2f � 1=G, the radius of the event horizon is givenby Rd+1H = 16�(d+ 2)Ad+2 MMd+2f : (4)This form of the black hole horizon holds as long asRH � R which is for TeV masses true since RH exceedsR typically by �fteen orders of magnitude. A black holeemits thermal radiation [10]. The temperature of thisradiation is given by the radial derivative of the metriccoe�cient f(r) at the horizon. For the case of d extradimensions this temperature is given byTH = d+ 14�RH : (5)However, this prediction is limited to large black holemasses M � Mf . For masses close to the fundamentalmass one expects modi�cations of the Hawking temper-ature and it was conjectured that the thermal radiationcould be suppressed, leading to the formation of a stable�nal state [11{ 13].Although, some extra dimensional models like ineq. (1) can solve the hierarchy problem, they are notthe desired uni�ed description of all forces yet. Thereason for this is that gravity (with or without extradimensions) can not be generalized in the usual loop ex-pansion to a renormalizable quantum �eld theory. It was�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 3 { 4 2010 219



220 T.Burschil, B.Kochconjectured that this problem results from expanding thetheory in the gravitational coupling instead of solving thecomplete theory that might even contain higher powersin the curvature R. In [14 { 17] it was shown that by us-ing special truncation methods an exact renormalizationgroup (RG) equation for the gravitational coupling canbe derived. In a �rst order truncation those studies havebeen generalized to extra dimensions [18, 19] leading toa fundamental mass that depends on the energy scalek: Md+2f ! ~Md+2f (k). It was shown that the runninggravitational coupling has the form~Md+2f (k) =Md+2f "1 +� ktMf �d+2# (6)which also depends on a parameter, t. Going beyondone loop, this transition behavior between the infraredand ultraviolet regime was found to be even more pro-nounced with increasing number of extra dimensions[20]. For the case of d = 0 the e�ect of this runningcoupling on the structure of the Schwarzschild metricwas derived in [21]. The aim of this paper is to repeatthe construction for d 6= 0 and to study its phenomeno-logical implications.2. RG improved black holes in extra dimen-sions and black hole remnants. In at space-timethe de Broglie relation connects energies k and distancesd by k = 1=d. In curved space-time more care is neededsince distances are determined locally by the metric. Forthe case of a spherically symmetric Schwarzschild space-time, modi�cations of the de Broglie relation can onlydepend on the radial coordinate r. This leads to theansatz k(r) = �d(r) ; (7)where � is a parameter of order one. Before calculatingthe distance function d(r) it is essential to remember itsbehavior for large distances r ! 1. In this limit themetric should approach the at Minkowski metriclimr!1 d(r)r = 1 : (8)In that case the scale approaches asymptotically k(r !!1) � �=r. The distance function is calculated via thede�nition of distance in general relativity by integratingthe line element d(P ) = ZCqjds2classj (9)along a curve C. The subscript class indicates that theline element is calculated with a �xed couplingMf . We

parameterize C in Schwarzschild space-time and calcu-late the distance along the curveds2class = 1fclass(r0)dr02;d(r) = Z r(P )0 1pjfclass(r0)jdr0 :The parameterization along the radial coordinate r0 inthe range r0 2 [0; r(P )] is chosen like in [21]. In eq. (9)it is necessary to take the absolute value of ds in orderto have always a positive distance. Due to the absolutevalue the distance function di�ers inside and outside ofthe event horizon. Together with de�nition of the eventhorizon (4) the distance function is expressed in the tworegions bydr<RH (r) = Z dr0s r0d+1Rd+1H � r0d+1 ; (10)dr>RH (r) = Z dr0s r0d+1r0d+1 �Rd+1H : (11)It is not possible to �nd a general analytic solution forthose two distance functions. Instead, the functions areinterpolated between the two limits r ! 0 and r ! 1.For small r the denominator of (10) simpli�es and thesmall r limit can be integratedd(r) = Z r0 dr0s r0d+1Rd+1H � r0d+1 =r0!0= Z r0 dr0sr0d+1Rd+1H == 1R d+12H 2d+ 3r d+32 : (12)For large r one has to integrate in two steps, �rst formr0 = 0 to r0 = RH which just gives a constant summand~B, and afterwards from r0 = RH to r0 = r. In the sec-ond integration the fraction simpli�es to a constant anddistance behaves like r, again with a summand ~Ad(r) = Z rRH dr0s r0d+1r0d+1 �Rd+1H =r0!1= Z rRH dr0sr0d+1r0d+1 == r � ~A : (13)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 3 { 4 2010



Renormalization group improved black hole space-time in large extra dimensions 221This is the dependency as required in (8). Now the dis-tance function is interpolated between eq. (12) and (13)by d0(r) =  rd+3rd+1 + dRd+1H ! 12 ;d = (d+ 3)24 ; (14)which has the correct asymptotic behavior in the limitsr !1: d0(r)! r and r ! 0: d0(r)! r(d+3)=2. The pa-rameter d is evaluated by the small r limit. Identifyingthe energy scale k with inverse distance one �ndsk(r) = �d0(r) = � rd+1 + dRd+1Hrd+3 ! 12 : (15)This relation between the energy scale k and the radiusr in higher dimensional Schwarzschild space-time allowsto express the scale dependent fundamental mass ~Mf(6) in terms of the radial coordinate r.Modifying the horizon radius RH by the radius de-pendent fundamental mass ~Mf (r) and de�ning~t = (�=t)d+2 ; (16)gives ~Rd+1H (r) = 16�(d+ 2)Ad+2 1~Md+1f M~Mf == Rd+1H 241 + ~tMd+2f  rd+1 + dRd+1Hrd+3 ! d+22 35�1 ; (17)where ~t parameterizes the strength of the RG correctionsto the classical result. Since this ~RH has an explicit r-dependence it can not be interpreted as event horizon.Like usually the event horizon of a spherical symmetricblack hole solution is the zero of the radial metric coef-�cient f(r) = 1� ~Rd+1H (r)=rd+1. As shown in �g.1 themetric function does not cross f(r) = 0 for small valuesof M and so there is no singularity in the line elementds2. However, for a larger black hole mass one �nds thecritical case where the line element gets a zero at oneradius. For M > Mc this zero splits up into two zeros,where the outer zero corresponds to the apparent eventhorizon. As also shown in �g.1 this outer horizon growsfor large BH masses (r ! 1) and approaches the clas-sical event horizon of eq. (4). This kind of behavior ofthe metric function is independent of the number of ex-tra dimensions. As it will be explained in the following
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222 T.Burschil, B.Kochcan be considered a key testing stone for any suggestedtheory of quantum gravity. Thus, black hole decay willnow be studied in the presented theory with large extradimensions and RG improved black hole space-times.The derivative of the radial function at the event horizonwill still be interpreted as the black hole temperatureTH = 14� (@rf(r))����r=Horizon : (18)In a purely classical calculation, the temperature risesfor smaller BH masses, even up to the unphysical casewhen the typical energy of single quantum emitted bythe black hole exceeds the total energy (mass) of theblack hole. As it can be seen in �g.3, the temperature
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Fig.3.Comparison of the standard and two RG (~t = 0:002and ~t = 0:007, Mf = 1 TeV) temperature evolution of ablack hole with mass Mfor the RG behaves like the standard Hawking temper-ature for large masses M � Mc. But as soon as theBH mass approaches the critical mass the RG correctedtemperature is suppressed until at M = Mc the tem-perature is zero. This object with non zero mass Mcbut zero temperature is not emitting any radiation andcan thus be identi�ed with a stable �nal BH state. Al-though the existence of such BH remnant states can bemotivated from di�erent grounds [11 { 13] it is a naturaloutcome of the RG improved BH space-time. This be-havior solves the information loss problem and the prob-lem of unphysical (the total energy exceeding) radiationfor asymptotically slowly evolving black holes.However, by looking at the thermal spectrum cor-responding to a given temperature one sees that oneproblems remains. For thermal emission onto the fourdimensional brane the spectrum I is given byI(!; TH) = N !3exp(!=TH) + s ; (19)

where N is a normalization factor and s is the fac-tor corresponding to the spin of the emitted particle(Fermi-Dirac: s = 1, Boltzmann: s = 0, Bose-Einstein:s = �1). The energy (mass) of the black hole after asingle radiation process is then given byMfin =M �!.Calculating the spectrum (19) for a given black holemass M > Mc and taking the temperature as the tem-perature of the black hole before emission T = T (M)one �nds that part of the previous problem persists: Thespectrum is non zero even for very large values of ! (see�g.4), leading to the problem that the BH mass after
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Renormalization group improved black hole space-time in large extra dimensions 223tion like ! � M � Mc, the temperature in the expo-nential TH is zero and the spectral density (19) van-ishes. This cut o� behavior is shown in �g.4. The phys-ical interpretation of this simple modi�cation is: First,one notices that for ! � (M �Mc) the modi�ed andthe original spectrum agree. Second, for ! . M �Mcthe modi�cation becomes important. Further, the formTH = TH(Mfin) means that the black hole must knowabout the frequency ! of the emitted quantum, alreadyat the moment of emission, a behavior which smells likeviolation of causality. Nevertheless, in a thermodynam-ical approach this seems to be simplest solution to theproblem of overradiation.The result of this section is that RG (for a positiveparameter ~t) allows for a consistent description of thethermodynamic evolution of black holes. It further pre-dicts the formation of a �nal stable black hole state withtemperature TH = 0 and mass Mc.4. Phenomenology. Several models with extra di-mensions allow for an e�ective Planck mass at the orderof a few TeV. The most exciting prediction of such mod-els is the production of mini black holes due to particlecollisions at the TeV scale. Already a simple imple-mentation of a running of the gravitational coupling hasa signi�cant phenomenological impact on models withlarge extra dimensions [19]. Therefore, it is straightforward to study how the predictions about mini blackholes due to high energy particle collisions change forthe RG-improved black holes. The necessary conditionfor doing phenomenology with such black hole is thatthey are produced at all and that they are produced atsu�cient rates. Therefore, we will leave the analysis ofthe speci�c thermodynamical properties or of the directdetection stable remnants to future studies and focus onthe RG e�ects on black hole production.The semi-classical cross section for the productiona black holes due to a particle collisions with invariantenergy ps is given by�(ps) = �R2H�(ps�Mcut); (22)where RH is the Schwarzschild radius correspondingto the energy ps. The production threshold is usu-ally associated with the higher dimensional Planck scaleMcut = Mf . At this point it should be mentioned thatthe possible production of mini black holes at particlecolliders does not imply any risk [22{ 25]. This approx-imation of the cross section turned out to also be validin di�erent approaches (for a discussion see [26 { 31]).A �rst generalization is achieved by replacing the clas-sical Schwarzschild radius RH with the RG improvedSchwarzschild radius ~RH (17) (evaluated at the outerhorizon). The second generalization comes when re-

placing the heuristic threshold mass Mcut by the physi-cal mass scale Mc. This leads to a physically intuitivethreshold, since only forM >Mc an event horizon (andtherefore a black hole) exists. Thus, taking renormal-ization group into account the black hole cross sectionreads ~�(ps) = � ~R2H�(ps�Mc): (23)As one can see in �g.5, for the production of very mas-
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224 T.Burschil, B.Kochtron with Mc < 1:8 TeV and � ~R2H < LTev = 10fb�1).Combining the estimates already gives a rough estimateson lower limits on the LHC discovery potential in thismodel. For a more quantitative estimate of the discoverypotential the luminosities (LLHC ; LTev) are comparedto integrated partonic cross section�(ps) = partonsXi;j Z 10 dx Z 10 dy fi(x; q)fj(y; q)~�(pŝ);(24)by using the parton distribution functions fi [34]. Here,the center of mass energy in the partonic reference frameis given by pŝ = p(xy)s. For d = 2 the result of thisscan over the parameter space is given in �g.6, showing
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