
Pis'ma v ZhETF, vol. 92, iss. 7, pp. 534 { 538 c
 2010 October 10\Moth-eaten e�ect" driven by Pauli blocking, revealed for CooperpairsW.V.Pogosov+�1), M.Combescot+1)+Institut des NanoSciences de Paris, Universite Pierre et Marie Curie, CNRS, Campus Boucicaut, 75015 Paris, France�Institute for Theoretical and Applied Electrodynamics RAS, 125412 Moscow, RussiaSubmitted 4 June 2010Resubmitted 22 July 2010We extend the well-known Cooper's problem beyond one pair and study how this dilute limit is connectedto the many-pair BCS condensate. We �nd that, all over from the dilute to the dense regime of pairs, Pauliblocking induces the same \moth-eaten e�ect" as the one existing for composite boson excitons. This e�ectmakes the average pair binding energy decrease linearly with pair number, bringing it, in the standard BCScon�guration, to half the single-pair value. This proves that, at odds with popular understanding, the BCSgap is far larger than the broken pair energy. The increase comes from Pauli blocking between broken andunbroken pairs. Possible link between our result and the BEC-BCS crossover is also discussed.The continuous change from the dilute to the denseregime of correlated fermion pairs still is an open prob-lem. Although this problem initially arose in the con-text of the microscopic theory of superconductivity [1 {4], its interest was recently renewed by increasing activ-ity in ultra-cold atomic gases. The so-called BEC-BCScross-over between the dilute Bose-Einstein condensate(BEC) of molecules built out of two fermion-like atomsand the dense surper
uid state of atom pairs, is a currentmajor question [5, 6]. In the dilute regime, similaritiesbetween two-atom molecules and excitons should allowtheir description through a composite boson many-bodyformalism similar to the one we developed for excitons[7]. At large density, however, excitons su�er a Motttransition to an electron-hole plasma [8] while Cooperpairs evolve toward a Bardeen, Cooper and Schrie�er(BCS) superconducting condensate. The physics of thisBEC-BCS crossover has also been shown to have somerelevance for Cooper pairs in high-Tc cuprates [9, 10].In this Letter, we present a conceptually trivial butyet unveiled continuity between the Cooper's one-pairmodel [11] and the BCS superconductivity [12]. We doit by extending the Cooper's problem beyond the sin-gle pair limit. We start with a "frozen" Fermi sea jF0iof noninteracting electrons and we increase the numberof electron pairs, one by one, within a layer above jF0iwhere the BCS potential acts. By using this approach,we can reach the BCS regime [13] continuously startingfrom the single pair limit.Although, at the present time, such a pair increaseseems hard to experimentally achieve, the present analy-1)e-mail: Walter.Pogosov@gmail.com,Monique.Combescot@insp.jussieu.fr

sis can at least be seen as a gedanken experiment to re-veal a possible connection between two famous problemsin order to more deeply understand the role of the Pauliexclusion principle in Cooper-paired states. This proce-dure can also be seen as a simple but well-de�ned toymodel to shed some complementary light on the BEC-BCS crossover problem since, by changing the numberof pairs, we do change their overlap.The extension of the Cooper's model beyond one pairfaces a major many-body problem: the exact handling ofthe Pauli exclusion principle between a given number ofcomposite particles made of fermion pairs. This can bethe reason for this extension not to have been performedyet. As proposed by BCS [12], the smartest way to cir-cumvent this di�culty is to turn to the grand canonicalensemble because the number of fermion pairs is not�xed anymore. This procedure however masks the ex-isting continuity between the Cooper's problem and thedense BCS regime. This probably is one of the reasonsfor Schrie�er's claim [4] that the single-pair picture haslittle meaning in the dense BCS regime.We here overcome this quite old many-body di�-culty. To do so, we start with the equations proposedby Richardson [14] for the N -Cooper-pair energy in thecanonical ensemble and we manage to solve them ana-lytically for an arbitrary number of pairs. This is doneby extending the method we used to solve Richardson'sequations for just two pairs [15]. At the present time,our mathematical approach is restricted to the dilutelimit on the single pair scale. This is why the denselimit is here addressed by turning to the grand canon-ical ensemble and by extending the BCS formalism toan arbitrary �lling of the potential layer. This allows usto show that the solution of Richardson's equations we534 �¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010



\Moth-eaten e�ect" driven by Pauli blocking : : : 535have obtained in the dilute limit, remains valid in thedense regime.The result we �nd, proves that the average pair bind-ing energy linearly decreases with pair number over thewhole density range. For the standard BCS con�gura-tion with a potential extending symmetrically on bothsides of the Fermi level jF i for noninteracting electrons{ a con�guration which just corresponds to �ll half thepotential layer { this gives an average pair binding en-ergy reduced to half the single pair value.The present work also makes crystal clear how thishappens. Since Pauli blocking is the only way electronspaired by the BCS potential "interact" (see Fig.1), the
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–pTwo pairs cannot interact through the BCS potential givenin Eq.(2): this would imply p = k, the 2-free-pair statethen reducing to zero due to Pauli blockingdecrease of the average binding energy we �nd, resultsplainly from the decrease of the number of states avail-able for building paired states within the potential layer.We can visualize this idea by seeing each added new pairas a little moth eating one state, the number of "moth-eaten" states increasing linearly with pair number. This"moth-eaten" e�ect, which tends to decrease the e�ectfor N as compared to 1, is actually quite standard inthe many-body physics of excitons { which also are two-fermion states.Ground state energy of N pairs. As statedabove, our work implies handling Pauli blocking betweena large number of composite bosons. This is known tobe di�cult. However, our knowledge on excitons tellsus that many important features of the composite bosonmany-body physics are already seen when going from 1to 2 pairs: the e�ect induced by Pauli exclusion principleis already present for two pairs, in this way making theunderstanding for N pairs far easier. This is why, the 2-Cooper pair problem seeming to us not out of reach, weseriously looked for the ground state energy of 2 pairs,with the idea to extend the procedure to 3; 4; :::; N pairs.(i) One-pair energy. The energy of an electron pairwith opposite spins and zero total momentum, has beencalculated by Cooper [11]. It reads E1 = 2"F0��c, where

"F0 is the Fermi level of the frozen sea jF0i. In the weakcoupling limit, the single pair binding energy reduces to�c ' 2
e�2=�0V : (1)�0 is the density of states taken as constant over the po-tential extension 
. Since the purpose of this Letter is toshow as simply as possible, the unrevealed consequenceof Pauli blocking in BCS superconductivity, we accept,without questioning it, the "reduced" potential used byBardeen, Cooper, and Schrie�erVBCS = �V Xk;k0 wk0wkayk0"ay�k0#a�k#ak" (2)V is the weak potential amplitude (�0V � 1) whilewk = 1 in the energy layer "F0 < "k < "F0 + 
 abovejF0i. The main advantage of this reduced potential isto be exactly solvable. This allows us to evidence theunrevealed physics induced by Pauli blocking betweenCooper pairs in a sharp way.(ii) N -pair eigenstates. Forty �ve years ago,Richardson has derived [14] the exact form for theeigenstates of N pairs. Their energies read as EN == R1 + ::: + RN where R1, ..., RN are solution of Nalgebraic equations. For N = 2, these equations are1 = V Xp wp2"p �R1 + 2VR1 �R2 (3)plus a similar one with 1 changed into 2 { the equa-tions for higher N 's reading as Eq.(3) with all possibleR di�erences [16]. Richardson succeeded to recover theBCS result [14] by solving these equations analyticallyin the in�nite-N limit for a half-�lled potential. Today,these equations are currently approached numerically forsmall superconducting granules with countable numberof pairs [17]. However, an analytical solution of theseequations for arbitrary N and potential has not beengiven yet.(iii) 2-pair ground state energy. These equations ac-tually have a small dimensionless parameter which is theinverse of the pair number Nc = �0�c above which pairsstart to overlap { this number increasing linearly withsample size. By writing these equations in a dimensionalform in terms of zi = (Ri�E1)=�c and by performing anexpansion in 
 = 1=Nc, we found [15] that, for a weakcoupling, the two-pair energy reads, at lowest order in
 which turns out to be also an expansion in 1=�0E2 = 2 ��2"F0 + 1�0�� �c�1� 1N
�� : (4)N
 = �0
 being the number of states in the potentiallayer.This result shows that Pauli blocking changes the en-ergy of two single pairs (2E1) in two ways: It increases�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010



536 W.V.Pogosov, M.Combescotthe free part by 1=�0 which just is the Fermi level changeunder a one-electron increase { the extra 2 coming fromspin. It also decreases the correlated part, one state be-ing blocked in the 2-pair con�guration. A way to betterachieve this understanding is to rewrite the single pairbinding energy �c as�c = �0
� 2�0 e�2=�0V � = N
�V (5)Eq. (4) then readsE2 = 2 ��2"F0 + 1�0�� (N
 � 1) �V � (6)Comparison between Eqs.(5) and (6) evidences that thecorrelation energy of two pairs is controlled by the num-ber of empty states (N
 � 1) in the potential layer, i.e.,the number of states available to build the paired con-�guration.(iv) N -pair energy in the dilute regime. It is actuallypossible to solve Richardson's equations along the sameprocedure as an expansion in 
, provided that N=Ncstays small, a restriction which a priori excludes thedense BCS regime, but still corresponds to N arbitrarylarge since only N=Nc matters. The detailed derivationof this extension will be presented in the long version ofthis Letter. Let us here give just a sketch of our proce-dure.Following Ref. [15], we �rst rewrite sums appearingin the Richardson's equations asV Xp wp2"p �Ri = 1 + �0V 1Xm=1 Imm zmi ; (7)where Im = 1 � e�2m=�0V . It can then be shown that,when the number of pairs is even, N = 2n, the solutionfor the zi's at the lowest order in 
 is such thatz1 = �z2n ' a1p
; ..., zn = �zn+1 ' anp
: (8)Substitution of Eq. (8) into the Richardson's equationsleads to n equations for a1, ..., an which read like0 ' I1a1 + 1a1 � a2 + :::+ 1a1 + a2 + 12a1 : (9)We now multiply Eq. (9) by a1 and add to similar equa-tions for a2, ..., an. This leads to0 ' I1 �a21 + :::+ a2n�+ n(n� 1=2): (10)Next, we turn to the sum of Richardson's equations, asgiven by Eq. (7), with two terms kept, namely0 ' I1 2nXi=1 zi + I22 2nXi=1 z2i : (11)Using Eqs.(10), (11), as well as the de�nition of I1 andI2, we can �nd the sum of zi at lowest order in 
. From

it, we get the following expression for the energy of N -pair stateEN = N �2�"F0 + N � 12�0 �� �c�1� N � 1N
 �� : (12)The same formula for EN can be derived derived for anodd number of pairs, although the form of zi's given byEq. (8) is somewhat more complicated.Let us now analyze this result. The �rst term of EN isequal to twice the sum "F0+( "F0+ 1�0 )+ ...+("F0+N�1�0 ):This just is the energy of N free free pairs added to thefrozen sea jF0i. The fact that we do recover the exactnormal state energy whatever N , can be a surprise be-cause Eq.(12) is a priori derived in the smallN=Nc limit.This led us to think that, most probably, the second termof EN also stays valid for N larger than Nc.(v) Energy in the dense regime. It is �rst remarkableto note that the above result exactly matches the BCScondensation energy. Indeed, this condensation energyis known to be EBCS = 12�0�2 with � = 2!ce�1=�0V .As 2!c = 
 is the potential extension, EBCS also readsEBCS = 12�0
2e�2=�0V = N
2 �c2 : (13)N
=2 is the pair number for a potential extending sym-metrically on both sides of the Fermi level. The BCSresult can thus be understood as all up and down spinelectrons pairs in the potential layer form Cooper pairs,their binding energy in this N -pair con�guration beinghalf the single-pair energy: This is just Eq.(12) extrap-olated to half-�lling N = N
=2 for N � 1 ' N . Thisshows that the "moth-eaten" e�ect { derived in the di-lute limit { seems to stay valid in the dense BCS regime,where pairs strongly overlap.One important characteristic of the average bindingenergy we �nd in the dilute limit, is its linear decreasewith pair number. In order to demonstrate the validityof this result in the dense regime, we consider �llingsdi�erent from N
=2, i.e., a potential extension di�erentfrom ��!c and �+!c, the chemical potential � being, asusual for grand canonical ensemble, afterwards adjustedto get the electron number. Textbook BCS formalism[18] then gives the gap equation as1 = �0V2 Z 
��+"F0��+"F0 d�p�2 +�2 : (14)An exact solution exists for � = "F0 +
=2. In the caseof asymmetrical potential with boundaries still largeenough to have N � �0�, we can replace sinh�1 byan exponential. Eq.(14) then gives� ' e�1=�0V 2p(�� "F0) (
� �+ "F0): (15)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010



\Moth-eaten e�ect" driven by Pauli blocking : : : 537It is possible to show that the condensation energy stillreads as 12�0�2, with � now given by Eq.(15). ThisyieldsN�c(1�N=N
), which again agrees with Eq.(12).It can be of interest to note that, by inserting Eq.(5)into Eq.(12), we can rewrite this condensation energy asEcondN = N (N
 �N) �V = NoccupNempty�V ; (16)since N is the number of occupied states in the potentiallayer while (N
�N) is the number of empty states. ThisN dependence makes the condensation energy maximumwhen the potential acts symmetrically with respect tothe Fermi level which precisely is the BCS con�gura-tion.A last { mathematical { result supporting the valid-ity of Eq.(12) at large density, is complete �lling. Togain condensation energy, empty states feeling the po-tential are required. There is none for complete �lling.The only possible processes then are electron exchanges.These are forbidden within VBCS . Consequently, con-densation energy must then reduce to zero. This againagrees with Eq.(12) for N = N
.Physical consequences of this N-pair energy.(i) Continuity between dilute and dense regimes. Theabove discussion shows that the energy of N Cooperpairs given in Eq.(12), although obtained by solvingRichardson's equations in the dilute limit, remains validin the dense regime. This supports our understanding,reached from the exciton many-body physics, that, dueto Pauli blocking, the average pair binding energy canonly decrease when increasing the pair number, what-ever the density. It also reveals a deep connection {missed until to now { between the Cooper's picture andthe BCS regime, in spite of the fact that, as often ar-gued, a strong overlap between pairs in the dense regimeshould destroy any link with the Cooper's model [4].This disclosed connection can have hidden experimentalconsequences in superconductivity because, as revealedfrom Eq.(12), paired states do have two relevant energyscales: the single pair energy �c and the excitation gap�. These two quantities essentially di�er by a factor 2in the exponent. This factor of 2 however is far frombeing unimportant because, for e�1=�0V very small, itmakes the order of magnitude of these two quantitiesquite di�erent. Di�erence between the two factors hasalready been noted and discussed in the literature (see,e.g., p. 169 of Ref. [4]).(ii) BEC-BCS cross-over. This connection also o�ersa supplementary route to tackle BEC-BCS cross-over.Indeed, in Eagles's and Leggett's approaches, the pairoverlap is increased by decreasing the potential V whilewe here increase this overlap by increasingN . These twoprocedures however have some important di�erences: (i)

By acting on N , the Pauli exclusion principle blocksmore and more states while this blocking stays constantwhen one changes V at constant potential extension 
.(ii) Refs. [1, 2] are based on a BCS wave function ansatzaccepted as accurate in the dense and dilute regimesbut more questionable along the crossover [2]. In con-trast, we here use the exact wave function obtained byRichardson for the ground state energy of N pairs. Inspite of these di�erences, the general conclusion of Ref.[2] and the present letter stays the same: ground statepairs in the dilute and dense regimes are not so muchdi�erent, a conclusion at odds with Schrie�er's claim [4].(iii) Excitation gap. Since the average pair bindingenergy decreases over the whole density range, the readermost probably stays with one major question: what con-trols the gap in the excitation spectrum of superconduc-tors? The answer again is Pauli blocking. When a pairis broken, the system not only looses its binding energy,but all the remaining unbroken pairs have their averagebinding energy decreased: the two free electrons result-ing from the Cooper pair broken by a photon, block twopair states (the photon momentum being small but notexactly zero). The remaining unbroken pairs feel theseblocked states when trying to construct their correlatedstate. The latter e�ect increases with the number of un-broken pairs to end in the dense regime, by being farlarger than the broken pair energy.Preliminary results show strong indications thatwhen N becomes larger than Nc, the threshold energyto break a pair achieves the same V and N dependencesas �. Similar result for the gap change from single-pairto a more cooperative regime was actually found in Refs.[1, 2] within a variational BCS-like approach, this changegoing along a weak singularity [3].(iv) Super
uid and virtual pairs. We here deal withpaired states formed out of all the 2N up and down spinelectrons added in the energy layer where the potentialacts. These electrons feel the potential; they are corre-lated and form the N pairs we consider in this Letter.These pairs are the ones which are "condensed" into thesame quantum-mechanical state in the BCS wave func-tion ansatz. Schrie�er calls them [4] "super
uid pairs".These "super
uid pairs" have to be contrasted withwhat Schrie�er [4] calls "virtual pairs". The latters cor-respond to "electrons excited above the Fermi level" jF iof the noninteracting electrons. It is of importance tonote that the concept of "virtual pairs" is physically rel-evant in the dense regime only because the Fermi leveljF i must not be smeared out too much by interactionsin order to keep some physical meaning. As a result,the understanding of the BCS regime in terms of "vir-�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010



538 W.V.Pogosov, M.Combescottual pairs" tends to break in an arti�cial way a possiblecontinuity with the dilute limit.These "virtual pairs" are the ones commonly usedto give a qualitative understanding [18, 19] to the BCScondensation energy, when writing it as a pair numbermultiplied by a pair energy. Indeed, their number, de-duced from the width of the BCS distribution change, isof the order of N� = �0�. This gives a pair energy ofthe order of �, within an irrelevant factor of 2. From it,it is then concluded [20] that the "pair energy" must beof the order of the gap. It is clear that this conclusionfully relies on what is chosen as pair number. By in-stead taking the total number of pairs N
=2 feeling thepotential, as we here do { this number being the naturalpair number of the problem { the same BCS condensa-tion energy gives a pair energy exactly equal to �c=2 inagreement with Eq. (12).We wish to stress that, when compared to the under-standing based on "virtual pairs", understanding basedon"super
uid pairs" provide a natural connection be-tween the dilute and dense regimes of pairs. Withinthese "super
uid pairs", the large value of the excitationgap is due to many-body e�ects arising from Pauli block-ing between broken and unbroken pairs, these many-body e�ects de�nitely having some physical relevance.Conclusion. We have extended the well-knownCooper's model beyond the one-pair con�guration andrevealed the simple link which exists between this modeland BCS superconductivity. We show that the averagepair binding energy linearly decreases with pair num-ber. In agreement with our understanding of the ex-citon many-body physics, the Pauli exclusion principleinduces a "moth-eaten e�ect" on Cooper pairs, unveiledhere for the �rst time. The average pair binding energyin the standard BCS con�guration is shown to only behalf the single pair value, as a result of their mutual Pauliblocking. This makes the excitation gap in the denseregime far larger than the broken pair energy. This in-crease is due to the Pauli exclusion principle induced bymany-body e�ects between broken and unbroken pairs.Our work evidences that superconductors have a hiddensecond energy scale { the average pair binding energy{ which, in the weak coupling limit, is far smaller thanthe gap. This result should stimulate new experiments inthis very old �eld. Finally, to precisely understand howthe isolated pair and BCS regimes are connected, can bevery valuable in a possible approach to the BEC-BCScross-over within a single composite boson many-bodyformalism [7].M.C. wishes to thank Tony Leggett for enlighteningdiscussions during her invitation by the University ofIllinois at Urbana-Champaign. W. V. P. acknowledges
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