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 2010 October 25Second wind of the Dulong-Petit Law at a quantum critical pointV.A.Khodel+r, J.W. Clarkr, V.R. Shaginyan�1), M.V. Zverev+�+Russian Research Center Kurchatov Institute, 123182 Moscow, RussiarMcDonnell Center for the Space Sciences & Department of Physics, Washington University, St. Louis, MO 63130, USA�Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, Russia�Moscow Institute of Rhysics and Technology, 123098 Moscow, RussiaSubmitted 14 September 2010Renewed interest in 3He physics has been stimulated by experimental observation of non-Fermi-liquid be-havior of dense 3He �lms at low temperatures. Abnormal behavior of the speci�c heat C(T ) of two-dimensionalliquid 3He is demonstrated in the occurrence of a T -independent � term in C(T ). To uncover the origin of thisphenomenon, we have considered the group velocity of transverse zero sound propagating in a strongly corre-lated Fermi liquid. For the �rst time, it is shown that if two-dimensional liquid 3He is located in the vicinity ofthe quantum critical point associated with a divergent quasiparticle e�ective mass, the group velocity dependsstrongly on temperature and vanishes as T is lowered toward zero. The predicted vigorous dependence ofthe group velocity can be detected in experimental measurements on liquid 3He �lms. We have demonstratedthat the contribution to the speci�c heat coming from the boson part of the free energy due to the transversezero-sound mode follows the Dulong-Petit Law. In the case of two-dimensional liquid 3He, the speci�c heatbecomes independent of temperature at some characteristic temperature of a few mK.Almost two hundred years ago, Pierre-Louis Dulongand Alexis-Th�er�ese Petit [1] discovered experimentallythat the speci�c heat C(T ) of a crystal is close to con-stant independent of the temperature T . This behav-ior, attributed to lattice vibrations { i.e. phonons { isknown as the Dulong-Petit Law. Later, Ludwig Boltz-mann [2] reproduced the results of Dulong and Petitquantitatively in terms of the equipartition principle.However, subsequent measurements at low temperaturesdemonstrated that C(T ) drops rapidly as the T is low-ered toward zero, in sharp contrast to Boltzmann's the-ory. In 1912, Peter Debye [3] developed a quantumtheory for evaluation of the phonon part of the speci�cheat of solids, correctly explaining the empirical behav-ior C(T ) � T 3 of the lattice component as T ! 0. Inthe Debye theory, the T -independence of C(T ) is recov-ered at T � TD, where TD is a critical temperature cor-responding to the saturation of the phonon spectrum.With the advent of the Landau theory of quantum liq-uids [4], predicting a linear-in-T dependence of C(T ) forthe speci�c heat contributed by itinerant fermions, ourunderstanding of the low-temperature thermodynamicproperties of solids and liquids thus seemed to be �rmlyestablished. However, recent measurements [5, 6] of thespeci�c heat of two-dimensional (2D) 3He as realized3He �lms absorbed on graphite preplated with a 4Hebilayer, reveal behavior strongly antithetical to estab-1)e-mail: vrshag@thd.pnpi.spb.ru

lished wisdom, which calls for a new understanding ofthe low-temperature thermodynamics of strongly corre-lated many-fermion systems.Owing to its status as a fundamental exemplarof the class of strongly interacting many-fermion sys-tems, liquid 3He remains a valuable touchstone for low-temperature condensed-matter physics. In recent years,interest in 3He physics has been driven by the the obser-vation of non-Fermi-liquid (NFL) behavior of dense 3He�lms at the lowest temperatures T ' 1 mK reached ex-perimentally [5 { 11]. In particular, measurements of thespeci�c heat C(T ) in the 2D 3He system show the pres-ence of a term � tending to a �nite value as T ! 0. Suchbehavior contrasts sharply with that of its counterpart,three-dimensional (3D) liquid 3He; for this system, thelower the temperature, the better Landau Fermi-liquid(FL) theory works. (Here we shall not consider super-
uid phases of 3He.)In seeking the origin of the anomalous contribution �remaining in C(T ) at the lowest temperatures attained,it is instructive to examine the schematic low-T phasediagram of 2D liquid 3He shown in Figure. The es-sential features of this picture are documented by thecited experiments on 3He �lms. The e�ective couplingparameter is represented by z = �=�1, where � is thenumber density of the system and �1 is the critical den-sity at which a quantum critical point (QCP) occurs.This QCP is associated with a divergence of the e�ec-tive mass M�(z), portrayed in Figure by the curve (in�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010 585
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QCPPhase diagram of the 2D liquid 3He system. The re-gion de�ned by z = �=�FC < 1 is divided into LFL andNFL domains separated by a solid line. The dependenceM�(z) / (1� z)�1 is shown by the solid line approachingthe dashed asymptote, thus depicting the divergence of thee�ective mass at the quantum critical point (z = 1; T = 0)indicated by the arrow. In the region z & 1, the fermioncondensate (FC) sets in and Dulong-Petit behavior of thespeci�c heat is realized for the strongly correlated quantummany-fermion system (as represented by the dash horizon-tal line at T = 0)red on line) that approaches the dashed asymptote atz = 1. The T � z phase plane is divided into regionsof 2D Fermi-Liquid (FL) and non-Fermi-Liquid (NFL)behavior. The part of the diagram where z < 1 consistsof a FL region at lower T and a NFL region at higherT , separated by a solid curve. The regime where z & 1belongs to a NFL state with speci�c heat taking a �-nite value �(�) at very low temperatures. The physicalsource of this excess heat capacity has not been estab-lished with certainty, although it is supposed that the� anomaly is related to peculiarities of the substrate onwhich the 3He �lm is placed.In this letter we propose that the observed � term inC(T ) can instead have its origin in an intrinsic mecha-nism analogous to that producing the classical Dulong-Petit behavior in solids. It is shown for the �rst timethat in systems (such as 2D 3He) containing a fermioncondensate (FC), the group velocity of transverse zerosound depends strongly on temperature. It is this depen-dence that gives rise to the � term, granting the Dulong-Petit Law a \second wind."As indicated above, the most challenging feature ofthe NFL behavior of liquid 3He �lms involves the speci�cheat C(T ). According to Landau theory, C(T ) varies lin-early with T , and at low �lm densities the experimentalbehavior of the speci�c heat of 2D liquid 3He is in agree-ment with FL theory. However, for relatively dense 3He�lms, this agreement is found to hold only at su�cientlyhigh temperatures. If T is lowered into the millikelvin

region, the function C(T ) ceases to fall toward zero andbecomes 
at [5, 6, 11].The common explanation [5, 6, 12] of the 
atten-ing of C(T ) seen in these experiments imputes the phe-nomenon to disorder associated with the substrate thatsupports the 3He �lm. More speci�cally, it is consid-ered that there exists weak heterogeneity of the sub-strate (steps and edges on its surface) such that qua-siparticles, being delocalized from it, give rise to thelow-temperature feature � of the heat capacity [6]. Evenif we disregard certain unjusti�ed assumptions made inRef. [12], there remains the disparate fact that the emer-gent constant term in C(T ) is of comparable order fordi�erent substrates [5, 6, 11]. Furthermore, the expla-nation posed in Ref. [12] implies that the departure ofC(T ) from FL predictions shrinks as the �lm densityincreases, since e�ects of disorder are most pronouncedin weakly interacting systems. Contrariwise, the anom-aly in C(T ) makes its appearance in the density regionwhere the e�ective mass M� is greatly enhanced [6, 11]and the 2D liquid 3He system becomes strongly corre-lated. This reasoning compels us to consider that theNFL behavior of C(T ) is an intrinsic feature of 2D liq-uid 3He, which is associated with the divergence of thee�ective mass rather than with disorder.The 
attening of the curve C(T ) as seen in 3He �lmsis by no means a unique phenomenon. Indeed, as ex-pressed in the Dulong-Petit (DP) law, the speci�c heatC(T ) of solids remains independent of T as long as Texceeds the Debye temperature 
D , which is determinedby the saturation of the phonon spectrum of the crystallattice. Normally, the value of 
D is su�ciently highthat the DP law belongs to classical physics. However,we will argue that the DP behavior of C(T ) can alsomake its appearance at extremely low temperatures instrongly correlated Fermi systems, with zero sound play-ing the role of phonons.To clarify the details of this phenomenon and calcu-late the speci�c heat C(T ), we evaluate a part FB of thefree energy F associated with the collective spectrum!(k) = ck, based on the standard formulaFB = 1Z0 d!� 1e!=T � 1 Z Im �lnD�1(k; !)� d�; (1)where D(k; !) is the boson propagator, and d� is an el-ement of momentum space. Upon integration by partsthis formula is recast toFB=T 1Z0 d!� ln(1� e�!=T ) Z Im�@D�1(k; !)=@!D�1(k; !) � d�:(2)�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010



Second wind of the Dulong-Petit Law at a quantum critical point 587If damping of the collective branch is negligible (thecase addressed here), then D�1(k; !) ' (! � ck) and@D�1(k; !)=@! ' 1, while ImD�1(k; !) ' �(! � ck),and we arrive at the textbook formulaFB = T Z ln�1� e�ck=T� �(
0 � ck)d�; (3)where 
0 is the characteristic frequency of zero sound.At T � 
0, the factor ln(1�e�!=T ) reduces to ln(!=T ),yielding the resultFB(T ) / T ln(
0=T ); (4)which, upon the double di�erentiation, leads to the DPlaw C(T ) = const: At �rst sight, this law has nothing todo with the situation in 2D liquid 3He. Its Fermi energy�0F is around 1 K at densities where the Sommerfeld ra-tio C(T )=T soars upward as T ! 0, while 
0 must belower than T ' 1 mK. Indeed, in any conventional Fermiliquid, including 3D liquid 3He, there is no collective de-gree of freedom whose spectrum is saturated at such lowratios 
0=�0F .This conclusion remains valid assuming 2D liquid3He is an ordinary Fermi liquid. However, as seenfrom Figure, if the quantum critical point is reachedat T ! 0 and some critical density �1 where the e�ec-tive mass M�(�) diverges, as it does in the present case[6 { 8, 11, 13], the situation changes dramatically. Thisis demonstrated explicitly in the results of standard FLcalculations of the velocity ct of transverse zero sound,which satis�es [14, 15]ct2vF ln ct + vFct � vF � 1 = F1 � 63F1(c2t =v2F � 1) ; (5)where vF = pF =M� is the Fermi velocity and F1 =pFM�f1=�2 is a dimensionless version of the Landau�rst harmonic f1 [14, 16, 17]. The divergence of the ef-fective mass M� at the QCP implies that at the criticaldensity determined by f1pFM=�2 = 3 [16, 17], one hasc2t (�) ' p2F5M�(�)M ! 0; (6)whereas the sound velocity cs remains �nite in this limit[14, 15, 18].We see then that in case the e�ective mass M� di-verges, the group velocity ct vanishes as p1=M�. Flat-tening of the single-particle spectrum �(p) prevails aslong as jp� pF j=pF < M=M�, implying that the trans-verse mode softens only for rather small wave numbersk � pFM=M�. Unfortunately, the associated numericalprefactor cannot be established, rendering estimationof 
0 � (p2F =M)pM=M� correspondingly uncertain.

Nevertheless, one cannot exclude a signi�cant enhance-ment of the Sommerfeld ratio C(T )=T at T ' 1mK dueto softening of the transverse zero sound in the precriti-cal density region.At T ! 0 and densities exceeding �1, the sys-tem undergoes a cascade of topological phase transitionsin which the Fermi surface acquires additional sheets[19 { 21]. As indicated in Figure, FL theory continuesto hold with quasiparticle momentum distribution n(p)satisfying n2 = n, until a greater critical density �FC isreached where a new phase transition, known as fermioncondensation, takes place [21 { 27]. Beyond the point offermion condensation, the single-particle spectrum �(p)acquires a 
at portion. The range L of momentum spaceadjacent to the Fermi surface where the FC resides de-pends on the di�erence between the e�ective couplingconstant and its critical value. As will be seen, L is anew dimensional parameter that serves to determine thekey quantity 
0.At �nite T , the dispersion of the FC spectrum �(p)existing at � > �FC acquires a nonzero value propor-tional to temperature [21, 24 { 26]:�(p; T ) = T ln 1� n�(p)n�(p) ; pi < p < pf ; (7)where 0 < n�(p) < 1 is the FC momentum distributionand pi and pf are the lower and upper boundaries of theFC domain in momentum space. Consequently, in thewhole FC region, the FC group velocity, given byv(p; T ) = @�(p)@p = �T @n�(p)=@pn�(p)(1� n�(p)) ; pi < p < pf ;(8)is proportional to T . Signi�cantly, in the density inter-val �1 < � < �FC the formula (7) describes correctlythe single-particle spectrum �(p; T ) in case the temper-ature T exceeds a very low transition temperature [21].The FC itself contributes a T -independent term to theentropy S; hence its contribution to the speci�c heatC(T ) = TdS=dT is zero. Accordingly, we focus on thezero-sound contribution to C(T ) in systems having a FC.Due to the fundamental di�erence between the FCsingle-particle spectrum and that of the remainder ofthe Fermi liquid, a system having FC is, in fact, a two-component system. Remarkably, the FC subsystem pos-sesses its own set of zero-soundmodes, whose wave num-bers are relatively small, not exceeding L = (pf � pi) >0. The mode of prime interest for our analysis is thatof transverse zero sound. As may be seen by compari-son of formulas (6) and (8), its velocity ct depends ontemperature so as to vanish like pT as T ! 0.�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010



588 V.A.Khodel, J.W.Clark, V.R. Shaginyan, M.V. ZverevTo verify the latter property explicitly, we observe�rst that for systems with a rather small proportion ofFC, evaluation of the spectrum of collective excitationsmay be performed by employing the familiar FL kineticequation [14, 28](! � kv) �n(p) = �kn@n(p)@p Z F(p;p1)�n(p1)d�1:(9)Focusing on transverse zero sound in 2D liquid 3He, oneneed only retain the term in the Landau amplitude Fproportional to the �rst harmonic f1. To proceed fur-ther we make the usual identi�cation (ct�cos �)�n(p) =(@n(p)=@p)�(n), where cos � = kv=kv. Equation (9)then becomes�(�)= � f1pF cos �Z cos� @n(p1)=@p1ct � v(T ) cos �1�(�1)dp1d�1(2�)2 ;(10)where cos� = cos � cos �1 + sin � sin �1, while v(T ) isgiven by equation (8). The solution describing trans-verse zero sound is �(n) � sin � cos �.We see immediately that ct � v(T ) � T ; thereforethe transverse sound in question does not su�er Lan-dau damping. In this situation, we are led to the simpleresult c2t = � pF5M Z @n(p)@p v(p; T )dp (11)upon keeping just the leading relevant termv(T ) cos �=c2t of the expansion of (ct�v(T ) cos �)�1 andexecuting straightforward manipulations. Factoring outan average value of the group velocity v(p; T ) / T=pF ,we arrive at the stated behaviorct(k) 'pT=M (12)for wave numbers k not exceeding the FC range L.Transverse sound can of course propagate in the other,noncondensed subsystem of 2D liquid 3He consisting ofquasiparticles with normal dispersion [14, 15, 28]. How-ever, its group velocity is T -independent, so the corre-sponding contribution to the free energy is irrelevant.As noted above, the characteristic wave number ofthe soft transverse zero-sound mode is given by the FCrange L(�) = pf � pi, treated here as an input para-meter. The key quantity 
0 is therefore estimated as
0 ' kmaxct, where kmax is the maximum value of thezero sound momentum at which the zero sound still ex-ists. In our case the zero sound is associated directlywith the FC; hence kmax ' pLpF and we have
0 ' kmaxct 'rTLpFM : (13)

As long as the inequality LpF=M < T is met (or equiv-alently, T=�0F > L=pF holds), the ratio 
0=T is small,and we are led to the DP result C(T ) = const. Then,in spite of the low temperature, C behaves as if the sys-tem were situated in the classical limit rather than at theQCP. Such a behavior is ensured by the fact that the sys-tem contains a macroscopic subsystem with heavy qua-siparticles. As the temperature ultimately goes down tozero at the �xed density �, the inequality LpF=M < Teventually fails, the quantum regime is restored and thedominant contribution to C comes from the \normal"fermions. In other words, there exists an extremely lowtemperature T0 below which the usual FL behavior ofzero sound is recovered.Interestingly, the value of the constant term in C(T )can be evaluated in closed form in terms of the FC rangeL. Upon inserting !t(k) = ctk into Eq. (3) and integrat-ing, the T -independent term in the speci�c heat is foundto be C=N ' LpF=8��; (14)where N is the number of atoms in the �lm. The FCrange parameter L also enters the result derived analo-gously for the spin susceptibility �. The FC componentof � is given by [21, 29]��(T ) ' �C(T ) LpF ; (15)where �C(T ) = �2B�=T .The results (14) and (15) jointly establish an un-ambiguous relation within our model between the T -independent term in the speci�c heat C(T ) and the Curiecomponent of the spin susceptibility �(T ) (which hasalso been observed experimentally [7, 8]). This relationcan be tested using existing experimental data [6]. TheT -independent speci�c heat C=N exists in the densityregion around � = 9:5 nm�2. Being referred to oneparticle, it is readily evaluated from � ' 0:25 mJ/K.One �nds C=N ' 0:01, yielding L=pF ' 0:05. On theother hand, the data for the spin susceptibility given inFig. 2(B) of Ref. [6] supports a Curie-like componentat � = 9:25 nm�2. The value of the corresponding nu-merical factor extracted from the data, which accordingto Eq. (15) is to be identi�ed with the ratio L=pF , isapproximately 0.07. Given the uncertainties involved,our model is consistent with the experimental data ofRef. [6].In summary, we have analyzed the group velocity oftransverse zero sound propagating in a strongly corre-lated Fermi liquid. We have shown for the �rst time thatif two-dimensional liquid 3He is located in the vicinity�¨±¼¬  ¢ ���� ²®¬ 92 ¢»¯. 7 { 8 2010
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