Pis’'ma v ZhETF, vol.92, iss. 12, pp.872—-876

© 2010 December 25

Tunneling Hall Effect

P.S. Alekseev?)

Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

Submitted 4 October 2010
Resubmitted 27 October 2010

Electron tunneling in a semiconductor heterostructure with a barrier in a weak magnetic field applied par-
allel to the barrier interfaces is analyzed theoretically. A novel mechanism of the Hall effect in this structure
is suggested. It is shown that the Hall current in the vicinity of the wide enough barrier is determined by
the orbital effect of the magnetic field on the electron motion under the barrier, rather than by the electron
& x H-drift and scattering in the conductive regions lying to the left and to the right of the barrier.

1. Application of a magnetic field frequently reveals
important features of numerous effects in semiconduc-
tors and metals and makes it possible to determine pa-
rameters of a material. The electron tunneling through
a semiconductor barrier in a magnetic field has been ex-
tensively studied in this regard. This paper is concerned
with the case in which the magnetic field is directed
along the barrier interfaces (see figure). It is necessary
to distinguish the cases of quantizing and non-quantizing
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Energy diagram of the heterostructure. The magnetic field
modifies the barrier as shown by use of thick dashed lines.
In the inset: heterostructure with a barrier, an in-plane
magnetic field, and the directions of the tunneling current
(j-) and the tunneling Hall current (j;|)

magnetic fields. As usual, in a quantizing magnetic field
the dependence of the current on the magnetic field and
the applied bias has an oscillatory character [1]. The ef-
fect of a non-quantizing magnetic field on the tunneling
current through a single barrier was experimentally and
theoretically studied for the first time in [2]. The mag-
netic field leads to a slight modification of the tunneling
current. The value of this modification was explained
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quantitatively in [2] in terms of a semiclassical pattern
of the electron motion under the barrier. Such an analy-
sis conforms to the concept of the “traversal time for
tunneling” [3].

At the same time, the structure in which 2D elec-
trons in a quantum well (QW) are subjected to an in-
homogeneous magnetic field has been fabricated quite
recently. The inhomogeneous magnetic field was gen-
erated by Abrikosov vortexes in a 3D superconductor
placed above the QW [4] or by narrow superconduc-
tor strips deposited above the QW [5]. In principle,
it is possible to fabricate a 1D magnetic barrier for 2D
electrons by using structures of a similar design. The
2D electron tunneling through 1D magnetic barriers was
theoretically studied in [6]. It was shown that the barrier
transparency coefficient depends not only on the wave
vector component in the tunneling direction, but also on
that along the 1D barrier interface.

In this paper, I consider the tunneling of 3D elec-
trons through a single 2D semiconductor barrier in a
weak non-quantizing magnetic field directed along the
barrier interfaces. It is shown that the tunneling proba-
bility depends on the wave vector in the plane of the in-
terface (as in the case of 2D electrons in structures with
a 1D magnetic barrier). This dependence gives rise to
a surface current along the interface near the barrier. I
demonstrate that the density of this current for realistic
values of the heterostructure parameters may exceed the
3D Hall current density described by the Drude formu-
las. Such a generation of the in-plane electric current
due to the cyclotron effect of the magnetic field under
the barrier can be named the tunneling Hall effect.

2. Let me choose the coordinate axes and the mag-
netic field direction as shown in figure (H = He,,
‘H > 0). Regions to the right and to the left of the barrier
are equally strongly doped with donors and the tempera-
ture is low enough. If a bias Up/e is applied to the struc-
ture (e > 0 is the elementary charge), its main part falls
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on the dielectric barrier (see figure). The magnetic field
is classical: hw. < Ep. Hence, an electron moves along
the classical cycloidal trajectory in both the right- and
left-hand regions and this motion is interrupted by scat-
tering events on the chaotic potential of donors and/or
on acoustic phonons. The tunneling current flows along
the z axis, being largely controlled by the barrier trans-
parency, rather than by the electron scattering (the case
of a clean enough sample and high conductivities of the
right- and left-hand regions is considered). Far from the
barrier, the Hall current is controlled by the £ x H-drift
and scattering. The Hall current density j, of electrons
is given by the Drude formulas:
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where n is the concentration of electrons; m, effective
mass; T, scattering time considered to be equal within
a numerical constant to the momentum relaxation time;
we. = eH/me, cyclotron frequency; j,, tunneling cur-
rent density determined by Uy and the barrier configu-
ration; and &3p, electric field in the left- and right-hand
conducting regions. Note that |Esp| is far smaller than
& = Uy/ea, which is the absolute value of £,, the electric
field in the barrier.

As the magnetic field is non-quantizing, it is true that
Imkp > 1and re > k' (Im = \/ch/eH; rc = 12, kg and
kp' are the cyclotron radius and the wavelength of a
characteristic electron). Thus, electrons in the right-
and left-hand regions can be described as classical wave
packets with the width Az, r. > Az > ki 1 and the
center T(t), moving as a classical particle in the magnetic
field. When the wave packet center ¥(t) reaches the bar-
rier (moment #;), the wave packet is partly transmitted
through, and partly reflected from the barrier as a quan-
tum electron with the wave vector m#(t;)/h. For this
reason, the effect of the magnetic field on the electron
motion outside the barrier should be neglected when we
study the tunneling process. Thus, in further calcula-
tions I assume that the magnetic field exists only within
the barrier. Such an approach was used in papers [7, 2].

The general concept of the tunneling Hall effect is
following. Similarly to the usual 3D situation, the elec-
tron motion under the barrier is accompanied by a cy-
clotron effect of the magnetic field in the (y, z)-plane.
Quantitatively, this is reflected by the fact that the in-
cident electrons with k, and —k, have different semi-
classical tunneling times introduced in [3] and different
tunneling and reflection amplitudes. In other words, the

Mucema B KIT® Tom 92 Bemm. 11-12 2010

magnetic field leads to the filtering of electrons with one
preferred direction of the wave vector k, during tunnel-
ing through the barrier. Thus, it is reasonable to believe
that, for some heterostructure parameters, the Hall cur-
rent within a distance of about the scattering length from
the barrier may be determined by a tunneling process,
rather than by the 3D mechanism.

Electrons in the right- and left-hand regions are con-
sidered to be in quasi-equilibrium states with the Fermi
distributions fr, and fr. Because it is expected that
both the 3D and the tunneling Hall currents correspond
to a weak modification of the Fermi distributions, but
the tunneling Hall current is due to all conduction elec-
trons, the distribution function of incident electrons is
supposed to be symmetrical and Fermi-like.

3. With the assumption of the absence of the mag-
netic field outside the barrier, the classification of elec-
tron states is the same as that in the absence of a mag-
netic field. The electron states in the right- and left-hand
regions are plane waves partly transmitted through, and
partly reflected from the barrier. It is convenient to
take a vector potential in the Landau gauge: A(r) =0
in the left-hand region, A(r) = —#ze, within the bar-
rier, and A(r) = —Hae, in the right-hand region. The
Zeeman coupling and the nonparabolicity are neglected.
The electron Hamiltonian has the form:

N 1 /. e 2
0, 2z<0 (2)
Viz)=| Vo —efz, 0<z<a
—efa , z>a

As the vector potential contains only the z space coor-
dinate, the electron wave functions are the plane waves
in the (z,y)-plane: ¥ (r) = ek=2+ku¥)y; . (2). The
Hamiltonian for the wave function wug,x,(2) = u(2)
takes a form of a magnetic-field-induced correction to
the potential energy, V4, (2): Hu = Eau, E =
E. + (k2 + k2)/2m,

N 2 d?
Hz:—%w+V(z)+5ka(z),
0, z2<0
2 ﬁ2k2
mc(z—z0)2— Y, 0<z<a
Vi, (2) = 2 2m ,
mw? h2k2
2°(a—z0)2— me, z>a
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where 2o = ky 12.

Let the barrier width a be substantially smaller than

the characteristic electron cyclotron radius r¢: re > a.
It is essential to assume that the values of Er and Ujp
are on the same order of magnitude and far smaller than
the barrier height V. The barrier is considered to be
Wide, koa >1 (ko = \/m/h)
While r. = kpl2, re > a and mw?zj = Wk} /m,
the inequality |6V}, (2)| < EF is true [see (3)]. There-
fore, the correction 6V}, to the potential energy within
the barrier and the electric field energy —efz, e£z < Uy,
are far smaller than V. This circumstance makes it pos-
sible to use the WKB asymptotic for the wave function
within the barrier®:

_ Ash[koz + 8S/h] + Bch[koz + 6S/H]
N VFko + 05" ’

where the action correction §S has the form:

z _ 2
§S(z) = ,/;’—VO /avky (2) do' + fZ
0

The continuity of the zeroth and first derivatives of
the wave function, which are plane waves u(z) =
= eth=* f pe 2 y(z) = te*:* in the left- and
right-hand regions and the WKB function (4) within
the barrier, should be maintained at the points z =
= 0 and z = a. Here, the quantity k%(k.,ky,) =
= /k2 —2m [0V, (a) — e € a]/h? is the z component of
the wave vector in the right-hand region modified by
the additional potentials of the electric and the magnetic
fields [see (3) and figure].

A full solution of the formulated problem of finding
A, B, r and t was made. However, in order to simplify
calculations, it is reasonable to accept the following re-
strictions (which are additional to those made above).
First, let me consider not too small wave vectors k, only:
|ky|12, > a. With the fact that r >> a kept in mind, the
inequality |k,|I2, > a is valid for most of electrons in
the real situation, when the electron distribution func-
tion is the symmetrical Fermi function. Second, let me
consider that the magnetic field potential 6V}, affects
the barrier transparency only by modifying the classi-
cal action in the argument of the functions sh and ch
in (4), rather than by modifying the prefactors and the
derivatives of the functions sh and ch (all these modifi-
cations are in the equations for r, ¢, A and B). It was

u(z) (4)

2Tt is impossible to use the WKB asymptotic for the wave func-
tion in the whole structure. This is associated with the sharp edges
of the barrier and gives rise to a pre-exponential factor in the semi-
classical tunneling probability D ~ e~2koe [g].

confirmed that this situation takes place if the inequali-
ties koa > 1 and kra > ko/kr are satisfied. Third, in
order to make the magnetic field induced action correc-
tion small: §Smag(a)/fi < 1, let the magnetic field be
weak enough: (kpa)? < kore. If all the conditions dis-
cussed above are satisfied, the transmission coefficient
D = (KX /k)|t> =1 —|r]? is:

16k.kL ky a’
D(k.,ky) = —= ze—zkoa[u . ] , (5
( 2 k2 ko 12, (5)

where an imaginary wave vector under the barrier, mod-
ified by the electric field, ko = \/2m(Vo — Uy /2)/h, was
introduced. Due to the restrictions imposed on the prob-
lem parameters, it should be taken that kf(k,,k,) =
= k2 + 2mUy /12 if Uy ~ Ep.

The magnetic-field-dependent term in the square
brackets in (5) has a semiclassical nature because of the
fact that it is due to the “under-barrier” action correc-
tion 4S. Thus, this term is determined only by the prop-
erties of the “imaginary”, but classical motion of an elec-
tron under the barrier in the z-direction with Ez =—-FE,,
V(z) = —V(z), and §I7ky (2) = —6Vi,(2) and can
be written in the semiclassical form: (mw.vya®/vo)/h,
where vy, = hko,,/m. This statement follows from
the connection between the solutions of the Schrodinger
equation and the classical motion equations (in the case
when the WKB method can be used) and is in the spirit
of the “imaginary time” method of calculation of the
atom ionization probability in an electric field [9].

It is noteworthy that the magnetic field correction
to the tunneling probability (5) can be obtained by use
of the perturbation theory in the continuous spectrum.
The unperturbated wave functions ugi),l /r(z) correspond

to the Hamiltonian (2) with A = 0 and are plane waves
incident from the left or from the right, partly transmit-
ted through, and partly reflected from the barrier V'(z).
The perturbation is the potential energy correction §V%,
inside the barrier. A calculation based on the formulas
from [10] leads to the correction to the tunneling ampli-
tude:

a

§tl(1) = rﬁo) fwcky }_:21;; /[ugi),r(z)]* ugl)’l(z) zdz,
0

where rﬁo) ~ —1 is the reflection amplitude of the

waves incident from the right. It was proved that
(k;/k:z)|tl(0) + (5151(1)|2 is equal to (5) in the first order
by H.

4. The fact that the tunneling probability (5) depends
on k, results in that the tunneled electrons, which had
a symmetrical distribution function in the left-hand re-
gion, will have a nonzero mean y-directed momentum
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in the right-hand region. During the motion of the tun-
neled electrons in the z direction in the right-hand re-
gion, their scattering and, thus, the relaxation of their
mean momentum will occur. So, a surface current will
flow near the right-hand barrier edge in a layer with a
width of about ls. (or the Hall voltage will be generated,
as in the common Hall effect measurements).

Let me restrict the analysis to calculation of the tun-
neling Hall current in the right-hand region, which is
due to electrons tunneled from the left-hand region only,
with the k,-dependent reflection of electrons in the right-
hand region disregarded. This corresponds to the case
in which the applied bias is high enough: Uy > Er (but,
nevertheless, Uy ~ Ep; see figure) and T' = 0. Thus, the
aim of the present calculation is an order-of-magnitude
estimation of the surface current in the situation of its
saturation, rather than a detailed calculation of its Uy
dependence for 0 < Uy < Ep. In spirit of the simple
Landauer approach of calculation of tunneling currents
and following [11], I calculate the flux (in the z direction)
of the y component of the velocity of tunneled electrons
as a sum of values v,v, multiplied by the transmission
coefficient over all the populated states in the left-hand
region with k, > 0. The surface current is a product of
this flux by —e and 7:

2eh’T

=G me

(27)3 m?2 /fL(Ek)kykzD(kyakZ)dka

k.>0

where 2 in the numerator is due to the spin degeneracy.
If T = 0, a simple calculation based on (5) gives®):

K21 e~2koa (k2)1 kL a?
22 % 2k’

. e
Jj| = —0.152 - (6)
where (k)1 = (k3)1(Uo) is a quantity on the same or-
der of magnitude as kr. A similar calculation for the
tunneling current

2eh

= " GnEm

/ fu(ex) ks D(ky, k) dk,

k.>0

yields:

eh e ko (kr), kb
i, = —0.533 2/27F 7
Jz 7r2m k(z) ) ()

where (k3)2 = (kL)2(Up) is also a quantity on the same
order of magnitude as kp. A numerical calculation of

3) The numerical constants in (6) and (7) are exact fractions, but
are written in the decimal mode due to their being lengthy and be-
cause of the presence of numerically calculated values (k% );.
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(k31 and (kL)2 shows that they lie between 2kp and
3kr when Uy lies between Uy and 3Uj.

For the considered configuration of the structure (fig-
ure), it is true that £, = —€ < 0 and £3p < 0. Thus, on
base of (1) and (6 ), one concludes the 3D Hall current
and the tunneling Hall current have different directions.
It is noteworthy that the result (6) is linear in H, whereas
the magnetic field correction to j, is quadratic in H [2].

The surface tunneling Hall current can be observed
if its density exceeds that of the 3D Hall current. To es-
timate the tunneling Hall current density (near the bar-
rier), j)| should be divided by the scattering length Is. =
h(k>)T/m, where (k%) can be taken the same as (k}); in
(6). Using (7), we obtain for the ratio of this current
density to the tunneling current density (with a numer-
ical coefficient omitted): j&**/j. ~ kpa®/kol3,. Com-
pare this formula with the formulas (1) for the 3D Hall
current density. Equations (1) leads to j3P = j.w, 7.
Therefore, the ratio of the tunneling Hall current den-
sity to the 3D Hall current density is given by

j;unn kF a2 (kF a)2
jy3D Vo T ko lse '

Now, we can formulate a criterion for prevalence of the
tunneling Hall current over the 3D Hall current: kra >
Vkolse (the barrier must be wide enough). At the same
time, it is necessary that a < I for the ballistic tunnel-
ing picture to be relevant. It is noteworthy that, accord-
ing to these estimations, £3p ~ —(ak2 /lsckZ) e~ 2koa€.

Let me summarize all the inequalities, discussed
above, which guarantee that the tunneling Hall current is
observable. The structure configuration must satisfy the
inequalities: kp < ko and kra > ko/kr. The scattering
length must lie within the interval: a < Iy < (kra)?/ko.
The magnetic field must have a cyclotron radius r. far
greater than (kpa)?/ko. Note that it follows from these
inequalities that a > kl,?l and r; > a, lg.

In paper [2], a GaAs/AlGaAs heterostructure with
the parameters Vp = 43 meV, a = 25 nm, Er = 12 meV
was studied. For this structure, the “geometrical” in-
equalities are valid with a twofold safety margin, which
is sufficient for a qualitative manifestation of the pre-
dicted effect. The optimal scattering length for this
structure is lc ~ 3-107% ecm. Such [ is a physically
reasonable value and provides a 1.5-fold safety margin
for the inequalities for Is.. The corresponding magnetic
fields must be lower than ~ 1 T (this value also corre-
sponds to a twofold safety margin for the magnetic field
inequality). The surface current calculated using (6) is
jjj ~ 3-1077 A/cm for this structure at % = 1 T. It
is noteworthy that raising the barrier width by even a
factor of 1.5, with all the other parameters remaining the
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same, will make the ranges of the appropriate values of
lsc considerably wider.

It is reasonable to try to measure the suggested ef-
fect in a heterostructure with several barriers (i.e., in a
superlattice with wide QW regions). If the distance be-
tween barriers is about s, the Hall effect in the whole
superlattice will be mainly due to the sum of the tunnel-
ing Hall effects near each barrier.

5. The spin-orbit coupling can influence the probabil-
ity of tunneling in clean enough heterostructures [11, 12].
For example, the surface current along the interface can
be generated as a result of the spin-orbit coupling of
the spin-polarized electrons tunneling through a barrier
grown of noncentrosymmetrical semiconductors (tunnel-
ing spin-galvanic effect [11]). Of interest is the possible
effect of the spin-orbit coupling on the tunneling Hall
effect under study. Let spin-polarized electrons tunnel
through the barrier in a GaAs/AlGaAs heterostructure
in a weak in-plain magnetic field. The goal is to calcu-
late the total surface current in the right-hand region.
It was proved that, in the case of spin-polarized elec-
trons tunneling in a weak magnetic field, the tunneling
Hall effect and the tunneling spin-galvanic effect are in-
dependent and give additive contributions to the surface
current near the barrier. The estimate of the tunneling
Hall current, obtained above for the structure studied
in [2], is on the same order of magnitude (10~7 A/cm)
as the estimate of the tunneling spin-galvanic current in
[11] for a similar GaAs/AlGaAs structure.

In conclusion, I would like to make two comments.
First, the nature of the tunneling Hall effect is simi-
lar to that of the Hall effect in the hoping conductivity
mode [13] in which, as in the present study, the Hall cur-
rent component arises due to the electron motion with
a negative kinetic energy. Second, in atomic physics, the
“imaginary time” method of calculation of the tunneling
probability of an electron from an atom, similar to the
consideration of the present paper, was used to study
the effect of a magnetic field on the atom ionization in
an electric field [14].
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