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We use the tunneling formalism to calculate the Hawking radiation of massive particles. For E > m, we
recover the traditional result, identical to the massless case. But E < m particles can also tunnel across the
horizon in a Hawking process. We study the probability for detecting such E < m particles as a function of
the distance from the horizon and the energy of the particle in the tunneling formalism. We derive a general
formula and obtain simple approximations in the near-horizon limit and in the limit of large radii.

1. Introduction. Hawking radiation [1] consists
in the emission of pairs of quanta from a black-hole
horizon: one with “positive energy” (positive co-moving
frequency) towards the exterior and one with “negative
energy” (negative co-moving frequency) towards the in-
terior of the black hole. The emission has a thermal
spectrum as seen by an asymptotic observer at infin-
ity, with a temperature Ty determined by the deriva-
tive of the free-fall velocity v at the horizon ry: Ty =
=h |% |7':7'h /2. This result can be obtained very sim-
ply in the semiclassical method. This tunneling descrip-
tion of Hawking radiation, first introduced by Volovik
[2] (see also [3] for the Parikh-Wilczek version, and [4]
for its extension to E > m massive particles), indi-
cates that the Hawking process can be understood as
the quantum tunneling across the horizon between clas-
sical trajectories on both sides of the horizon. The semi-
classical method was also applied to Hawking radiation
from rotating [5] and charged [6] black holes, and to sev-
eral higher-dimensional and other more exotic black hole
geometries (see e.g. [7-10] for some recent examples),
as well as to related phenomena such as the Zel’dovich-
Starobinsky effect [11, 12] (see [13]), and the Unruh ef-
fect [14] (see e.g. [15]).

We will focus on massive particles in a Schwarzschild
geometry. If one is interested only in the spectrum as
measured at infinity, then it is straightforward to ar-
rive at the usual conclusions [16], namely that there is
a threshold E > m for massive quanta, but otherwise,
the spectrum does not differ from that of the standard
massless case.

However, although no E < m particles arrive at in-
finity, they are nevertheless radiated from the horizon,
see also [17]. We will calculate the probability for de-
tecting such E < m particles as a function of the dis-
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tance from the horizon and the energy of the particle.
We largely follow Volovik’s derivation and notation [2]
(see also [18, 19]), focus on purely radial movement in
a Schwarzschild geometry and set A = ¢ = 1.

2. General calculation. We start from the
Painlevé-Gullstrand-Lemaitre (PGL) form of the
Schwarzschild line element:

ds® = gy dztde” = —[1 — v*(r)|dt® — 2v(r)drdt + dr?,
(1)

where v(r) = —y/rp/r is the free-fall velocity and 7,
the horizon or Schwarzschild radius. The PGL-metric is
stationary and moreover, unlike the Schwarzschild form,
it is regular across the horizon. This makes it partic-
ularly suited for the tunneling description of Hawking
radiation.

For a massive particle, one has

guupupu = —m? (2)

with p, = (—E,p;), leading to the energy-momentum
dispersion relation

m? 4 = (B =p- V)" )

Since v represents the free-fall velocity, it is natural to
write this as

E=FEy+p-v, (4)

and interpret E as the Doppler-shifted energy (the en-
ergy in the “black hole rest frame”), which is a con-
served quantity, and Eg = {/m?2 + p? as the energy in
a co- moving reference frame. This interpretation is re-
inforced by the observation that the PGL-metric is also
the natural metric in analogue gravity [20], where it de-
scribes the propagation of sound waves or other pertur-
bations on a background fluid moving with a velocity v.
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We want to calculate the influence of the mass on
the tunneling rate of particles from the black hole up
to a detector (where the particle can be captured in a
bound state, see also [21]) at an arbitrary fixed radial
distance R. The tunneling probability W is determined
by the imaginary part of the action S along the semi-
classical trajectory:

W  exp[—2ImS], (5)

where
ImS = Im/pT(r)dr (6)

and p,(r) follows from the dispersion relation (3). The
final result will be of the form

W (E) x exp[—2ImS;] exp[—2ImS,] (7

with Im.S; a contribution for tunneling through the hori-
zon, and ImS; an additional action in case there is a
second classically prohibited region beyond the horizon.
We certainly expect ImS; # 0 when E < m, since the
massive particle is then classically forbidden (see (3)) in
flat spacetime [v(r — oo0) = 0].

From (3), we obtain

E
p:_% VM@ DT = (8

= p1 + Dp2. 9)

Note that, in order for the semiclassical formalism to
be valid, the action must be large (ImS > 1). In par-
ticular, this implies that we consider the case mry > 1.
In the opposite limit mr, < 1, it was found in [17] that
the created bound particles are localized mainly on res-
onant levels outside the black hole with large occupation
numbers.

2.1. S;: tunneling through the horizon. For p;, we
shift the contour of integration to the complex plane and
apply the standard residue theorem [, f(z) = 2miRes f.

There is one pole along the radial path: v = —1 at
r =Tp, SO
—FE E
Resp; = Res v = (10)

(1+v)(1—-v) 2v'(rp)’

where the prime denotes d/dr. We recover the standard
Hawking result, as for a massless particle to reach infin-
ity: 2ImS; = E/Ty, with Tg = |[v'(rp)|/27. The pres-
ence of a mass has absolutely no influence on the prob-
ability of tunneling across the horizon.

2.2. Sy: Tunneling towards the detector at a distance
R. ps will only have an imaginary contribution when

E?* <m?(1-?). (11)

For a Schwarzschild black hole (v?
to

= rp/7), this leads

E<E.R)=m (1 - "—")1/2 (12)

for given R. Alternatively, it can be expressed as a con-
dition on R for given E:

m? 1

g2 h = 1—E2/m2rh

R>r.(E)= — (13)
For E > E, (or R < 7.), there is no additional barrier.
Once the particle has tunnelled through the horizon, it
can freely propagate up to the detector at R. At suffi-
cient distance from the black hole (v — 0), the condition
for a second imaginary contribution reduces to E < m,
as we anticipated. This means that, for £ > m, the
mass term does not cause any additional tunneling fac-
tor, independently of R, and we recover the standard
result for massless particles all the way to r — oo. For
E < m, however, the particle is created with an energy
E which is insufficient to escape all the way to oo, so it
will encounter a second barrier as v decreases (i.e., as
the particle moves towards flat spacetime).

In case of (11), we take the (positive) imaginary part

and obtain
\/mz m2
1—v2 1—1127”12_132 = (14)

\/m2 (1—ry/r) — E2, (15)

IIHSQ =

/dr

where the last expression is specific for a Schwarzschild
profile.

Note that the logarithmic divergence for r — r, (v —
— 1) is avoided because 7, > rp.

Imp, is shown, together with ImSs, for various val-
ues of E/m in Fig.1. For E/m < 1/+/2, Imp, increases
to a maximum 0.5m?/E at r = rpm?/(m? — 2E?) be-
fore decreasing to the asymptotic value vm?2 — E? for
r — oo. For E/m > 1/+/2, the maximum disappears
and the increase is monotonic.

3. Limit cases. Simple analytic results can be
found in the following interesting limit cases.

3.1. Limit R > rp. When the detector is very far
from the horizon, the integral is dominated by the con-
tributions where v — 0 and we can immediately write

R
ImS; = vVm? — Ez/ dr =~ R\/m? — E?, (16)

where we have assumed R > r., see Fig.2. The global
tunneling probability

W (E) o exp [~ E/Tg] exp[ 2RV/m? — E2} (17)
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Fig. 1. Semiclassical barrier Imp, (thick lines) and tunnel-
ing action ImS, (dashed lines) beyond the horizon rj, for
various values of E/m < 1

E/m

Fig.2. Tunneling action ImS, (thick lines) and approxi-
mation (16) for R >> rp (dashed lines) as a function of
E/m

decreases exponentially with the distance R to the detec-
tor, and the energy difference v/m?2 — EZ2. Note that this
result does not depend on the Schwarzschild profile, but
is generally valid as long as R lies sufficiently far away
from the horizon for the integral (14) to be dominated
by the region v < 1.

3.2. Limit R — 7. Another interesting limit is
v = 1,i.e. R/rp —1 < 1. In this near-horizon limit,
there is a non-zero contribution only for E <« m, see
(13). There will then be a strong barrier almost as
soon as the particle crosses the horizon (see the case
E/m = 0.1 in Fig.1 above), since it has practically no
energy to sustain its own mass.

Starting from (15), we write r/r, —1 = (E?/m?)y <
< 1, and obtain

(m?/E?)(R/m—1) 4
Im52 = E’f‘h / ?y VY — 17 (18)
1

where we have used E?/m? < 1 and r ~ rp,.
Two limit cases yield a simple interesting result.
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(i) E?/m? < R/rp—1 < 1 (i.e. R/r.—1> E?/m?).
For given R, this implies E?/E?(R) < 1. The inte-
gral is then dominated by the region where y > 1 so

ImSs ~ 2mry, (R/rn — 1)/ (19)

The second tunneling action ImS, becomes independent
of the energy E in this limit, as illustrated in Fig. 3.
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Fig. 3. Tunneling action ImS; (thick lines) and approxima-

tion (19) for E < E. (dashed lines) as a function of E/m
for different positions R of the detector near the horizon

(ii) 0 < (m?/E?) (R/rn, —1)-1 <K 1 (i.e. R/r.—1 ~
~ E?/m?).

For given R, this condition is equivalent to
1-E?/E? < 1. Now y =~ 1 in the whole integration

region, so
2 md[(R B2
2 E2 3/2
9 R 1/2 B2 3/2
= — = 1- — 22
(1) (om) o

where we have used R =~ 7.

The prefactor is similar to the previous result, but
now there is an additional suppression with decreasing
E, see Fig.4.

4. Conclusion. Massive particles tunnel across the
horizon at exactly the same rate as massless particles
of the same energy E, even if E < m. Such massive
particles with £ < m do not reach infinity, but nev-
ertheless have a non-zero probability of being detected
at any finite distance (R — rp) from the horizon. For
a detector very close to the horizon, or very far from
the horizon, the detection probability reduces to simple
expressions in terms of E/m and R/rp. Different labo-
ratory systems in which this behaviour of massive parti-
cles near a black hole could be simulated in the context
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Fig. 4. Tunneling action ImS, (thick lines) and approxima-
tion (22) for E ~ E. (dashed lines) as a function of E/m
for different positions R of the detector near the horizon

of analogue gravity were suggested in [22]. An interest-
ing prospect for future work is that the double barrier
could cause a resonance mechanism, thereby leading to
peaks of strongly increased tunneling probability. Such
resonant Hawking radiation in the presence of double-
barrier structures was recently studied for a BEC-based
analogue system in [23].
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