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Nonplanar (cylindrical and spherical) double layers (DLs) in a four-component dusty plasma (composed
of inertial positively and negatively charged dust, Boltzmann electrons and ions) are studied by employing the
reductive perturbation method. The modified Gardner (mG) equation describing the nonlinear propagation of

the dust-acoustic (DA) waves is derived, and its nonplanar double layer solutions are numerically analyzed.
The parametric regimes for the existence of the DLs, which are found to be associated with positive potential
only, are obtained. The basic features of nonplanar DA DLs, which are found to be different from planar ones,
are also identified. The implications of our results to different space and laboratory dusty plasma situations,
where opposite polarity dust are observed, are discussed.

I. Introduction. There has been a great deal of in-
terest in understanding linear and nonlinear features of
the novel dust acoustic (DA) waves [1], not only because
they exist in both space and laboratory dusty plasmas
[2, 3], but also because they triggered a number of re-
markable laboratory experiments [4-8]. Rao et al. [1]
have first theoretically predicted the existence of this
novel extremely low phase velocity (in comparison with
the electron and ion thermal velocities) DA-waves, where
the dust mass provides the inertia and the electron and
ion thermal pressures give rise to the restoring force.
The prediction of Rao et al. [1] has then conclusively
verified by a number of laboratory experiments [4-6].
The linear features of the novel DA-waves have also been
extensively studied for some other situations [9-11].

Rao et al., in their seminal work [1], have also stud-
ied small, but finite amplitude DA solitary waves. Ma-
mun et al. [12] and Mamun [13] have then generalized
the work of Rao et al. [1] to study arbitrary ampli-
tude solitary waves. The nonlinear DA-waves have also
been rigorously investigated by many authors for differ-
ent dusty plasma situations theoretically [14-28] as well
as experimentally [7, 8] during last two decades. How-
ever, all of these works on nonlinear DA-waves [1,12—
28] are based on the most commonly used dusty plasma
model that assumes negatively charged dust. The con-
sideration of negatively charged dust is due to the fact
that in low-temperature laboratory plasmas, collection
of plasma particles (viz. electrons and ions) is the only
important charging process, and the thermal speeds of
electrons far exceeds that of ions. But, there are some
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other more important charging processes by which dust
grains become positively charged [29-32]. The princi-
pal mechanisms by which dust grains become positively
charged are photoemission in the presence of a flux of
ultraviolet photons [29, 30], thermionic emission induced
by radiative heating [31], secondary emission of electrons
from the surface of the dust grains [32], etc.

There is direct evidence of the coexistence of posi-
tively and negatively charged dust in different regions
of space, viz. Earth’s mesosphere [33], cometary tails
[34, 35], Jupiter’s magnetosphere [35, 36], etc. Chow et
al. [32] have theoretically shown that due to the size ef-
fect on secondary emission, insulating dust grains with
different sizes can have the opposite polarity, smaller
ones being positive and larger ones being negative. The
opposite situation, i.e. larger (massive) ones being posi-
tive and smaller (lighter) ones being negative, is also pos-
sible by triboelectric charging [37, 38]. This is predicted
from the observations of dipolar electric fields perpendic-
ular to the ground, with negative pole at higher altitudes,
generated by dust devils [39, 40] and sand storms [41].
The formation of these dipolar electric fields means that
negatively charged smaller (i.e. lighter) dust are blown
upward in the convection, while positively charged larger
(more massive) dust remain the surface due to grav-
ity. It is shown by experiments using Mars dust analo-
gous in Mars simulation wind tunnel that p-sized dust
can carry net charges of around 10%e, and there could
be almost equal quantities of positively and negatively
charged dust in the suspension [37, 40].

The coexistence of positively and negatively charged
dust, with larger (massive) dust being positive and
smaller (lighter) dust being negative [42—44] or vice versa
[45], is also observed in laboratory devices [42-45] where
dust of polymer materials are used. It may be noted
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here that the coexistence of same sized dust of opposite
polarity may also occur by photoemission if the pho-
toemission yields of the dust-material are very different
[46].

Recently, motivated by these theoretical predictions
and satellite/experimental observations, a number of au-
thors [37,47-52] have considered a dusty plasma with
dust of opposite polarity, and have investigated linear
[48, 37] and nonlinear [47,49-52] DA-waves. However,
all of these studies are limited to one-dimensional pla-
nar geometry, which may not be the realistic situation in
space and laboratory devices, since the waves observed
in space (laboratory devices) are certainly not infinite
(unbounded) in one-dimension (1D). The most of these
works on nonlinear DA-waves are also concerned with
either solitary or shock structures, but not with double
layers. Therefore, in our present work, we consider a
dusty plasma system (consisting of positively and nega-
tively charged dust fluid, Boltzmann electrons and ions)
and a more general geometry (which is valid for both
planar, cylindrical and spherical geometries), and the-
oretically study the basic features of the DA DLs that
are found to exist in such a realistic novel dusty plasma
system.

The paper is organized as follows. The basic equa-
tions governing the dynamics of the DA-waves is pre-
sented in section II. The modified Gardner (mG) equa-
tion is derived in section III. The numerical analysis of
mG-equation along with a brief discussion is presented
in section IV.

II. Governing Equations. We consider the non-
linear propagation of the DA-waves in an unmagne-
tized nonplanar dusty plasma system containing pos-
itively and negatively charged dust fluid, Boltzmann
electrons and ions. Thus, at equilibrium, we have
Nio + ZpNpo = Neo + ZpNno, Where nyo, Npo, Neo, Nno
are, respectively ion, positive dust, electron, and nega-
tive dust number density at equilibrium, and Z, (Z,)
represents the charge state of positive (negative) dust.
The nonlinear dynamics of the DA-waves propagating
in such a nonplanar dusty plasma is governed by

% + %g(r”nnun) =0, (1)
s 1 22 o mpuy) =0, ®
Dkl

p=pie”? — pee” + HpTp — N,y (6)

where v = 0 for 1D planar geometry, and v = 1
(2) for a nonplanar cylindrical (spherical) geometry;
np (nn) is the positive (negative) dust number den-
sity normalized by its equilibrium value nyg (1n0); 4p
(un) is the positive (negative) dust fluid speed normal-
ized by Cqy = (Z,kgT;/m,)'/?; ¢ is the electrosta-
tic wave potential normalized by kgT;/e; p is the sur-
face charge density normalized by Z,eno; 0 = T;/Te,
o = Zymp/Zymy, e = Neo/ZnNno, i = Nio/ZnNno,
Up = ZpNpo/Zpning = 1+ e — i, My (mp) is the mass of
the negative (positive) dust, T; (T¢) is the ion (electron)
temperature, kg is the Boltzmann constant, and e is the
magnitude of the electron-charge. The time and space
variables are in units of the negative dust plasma pe-
riod w,,} = (my/4me® Z2nn0)'/?, and the Debye-radius
Apm = (Z,kpT;/4me* Z2n,0) /2, respectively.

III. Derivation of mG-Equation. To study fi-
nite amplitude DA DLs by the reductive perturbation
method [53, 54], we first introduce the stretched coordi-
nates:

¢ =e(r —Vpt), (7)
T =€, (8)

where € is a small parameter (0 < € < 1) measuring the
weakness of the dispersion, and V, (normalized by Cy)
is the phase speed of the perturbation mode, and expand
all the dependent variables (viz. ng, np, tn, up, ¢, and
p) in power series of e:

Ny =1+enl) +n® +En® 4. (9
np=1+en(M +enl®) +&nl® 4. (
up =0+ eult) + u® + Eu® 4 (
up =0+ eu](pl) + e2u§,2) + 63U£,3) +-- (12
¢:0+€¢(1) +€2¢(2) _|_€3¢(3) +-ee (
p:0+€p(1)+€2p(2)+63p(3)+"'- (
Now, expressing (1)—(6) in terms of { and 7, and sub-
stituting (9)—(14) into the resulting equations ((1)-(6)
expressed in terms of ¢ and 7), one can easily develop

different sets of equations in various powers of €. To the
lowest order in € one obtains

w_ oy_w o _ ¥ (
uy) = —/, ny’' =—, u,;’ = , 15)
P ‘}p P ‘}p? ‘}p
m__¥ o p2 o Ltam 1
"'n Vp2’ P 0, Vo Wi + peo’ (16)

where 1) = ¢(!). The expression for V;2 in (16) rep-
resents the linear dispersion relation for the DA-waves
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propagating in a dusty plasma under consideration. To
the next higher order in €, we obtain another set of equa-
tions, which, after using (15), (16), can be simplified as

L) a?y?  ap® n® _ 3a2¢?  agp® (17)
17 B A 2
2 2 2 2
NI G S G i (18)
mTays Ty, TavE T v
1 3
o = 5,41/,2 =0, A= p; — peo? — il - ppe®). (19

p

It is obvious from (19) that A = 0 since ¢*) # 0. The
solution of A = 0 for « is given by

1
AR \/C2 — 401,03,

(20)

a=o,=
where

C1 = pppi(tp + 3t + 6p1c0) + prepipo® (3pe — i),
Co = 2pp(pi — pe0®),
C3 = pi(1 — 3p; — 6peo) — HEUZ(l + 3pe).

It is obvious that (19) is satisfied for @ = a.. We have
numerically shown how «. varies with p. and p; for a
fixed 0 = 0.1. The results are displayed in Fig.1 which

Fig.1. (Color online) Showing how . (obtained from
A(a = ac) = 0) varies with pe and p; for o = 0.1

in fact represents the A = 0 surface plot, and provides
us the parametric regimes (which correspond to above
or below the A = 0 surface plot) of our present inter-
est. So, for a around its critical value (e.), i.e. for
|a — a.| = € corresponding to A = Ay, we can express

Ay as
A
Ag~s (3 ) la — a| = sAge,

oo (21)

where 4, = 6up (i + peo)?(1 + ac)/(1 + ppac)?, and
s=1fora>a,and s = —1for a < a.. So, for a # a,
we can express p(®) as
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1
P ~ EseA,ﬂ/ﬂ. (22)

This means that for a # a., p® must be included in
the third order Poisson’s equation. To the next higher
order in €, we obtain the third set of equations:

® W (3

e )
. =) o
ag_ib_l) - p% + 6% [u,})uﬁf)] - ag(g) =0, (25
D 2
gch’zb 28 A — (i + 1e0)6 + (i — peo? gt

where F,, = n%) (2)+n(2)u%)+un and Fp, = n,(,l)ug, )+
+ n(z)u(l) + u( ) Now, using (15)—(19) and (23)—(27),
we finally obtain a nonlinear dynamical equation of the
form:

oy 0 o 4

T aa

277 =0 28
6 C +q1/1 C + p 06C3 5 ( )
where p = sA,po, ¢ = poqo, and
V3
=—Pr 29
Po 2(1+ app) (29)
15 1 3
qQ = 2V6 (1 + ppa®) — 5 = (i + peo”). (30)

Equation (28) is a modified Gardner (mG) equation.
The modification is due to the extra term, 3-v), which
arises due to the effects of the nonplanar geometry. We
have already mentioned that ¥ = 0 corresponds to a
1D planar geometry which reduces (28) to a standard
Gardner (sG) equation. Our aim now is to numerically
analyze mG-equation. However, for clear understand-
ing, we first briefly discuss the stationary DL-solution of
this standard Gardner equation [i.e. (28) with v = 0].

The stationary DL-solution of the sG-equation (i.e.
(28) with v = 0) is obtained by considering a moving
frame (moving with speed Up) £ = ( — Upt, and im-
posing all the appropriate boundary conditions for DL-
solution, including ¢ — 0, dy/dé — 0, d?y/dEé? — 0
at £ & —oo. These boundary conditions for the station-
ary DL-solution allow us to express the sG-equation (i.e.
(28) with v = 0) as
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where the pseudo-potential V(v) is
Uo o, 5Au 5 Qo 4
V(W) = ——2ap? 4 2ot ypd 4 Doy, 32
() = gt + 54+ 2y (52)
It is obvious from (32) that

av (¢)

V) o= T =0 33)
=0

2V ()

1 ‘¢0<:0. (34)

The conditions (33) and (34), which are automatically
satisfied, imply that the DL-solution of (31) exists if and
only if

dV(¢w
Wy

where ¥, is the amplitude of the DLs. The condition
(35) can be expressed as

V(¥) ly=y,.= =0, (35)

52A2P0
Up = —Tq’; (36)
60
Vm = SA;LPO. (37)
Now, using (32) and (37) in (31) we have

dip
YW _
W9 VT %)

where v = ¢o/6. Now, integrating (38) the stationary
DL-solution of sG-equation (i.e. (28) with v = 0) can
be written as

_ Ym £
P = 5 1+ tanh A (39)
where A is the width of the DLs, and is given by
24
A=, ———. 40
—¥7d0 (40)

It is clear from (39) and (40) that DLs exist if and only
if go <0, i.e. ar < a < ay, where ay, (ay), obtained
from go = 0, is the lower (upper) limit of a above (be-
low) which DLs exist. We have graphically shown how
ay (upper surface plots of Figs. 2 and 3) and oy (lower
surface plots of Figs.2 and 3) vary with p., u;, and o.
On the other hand, since py > 0 and Uy > 0, (39) and
(37) indicate that the DLs are associated with positive
potential if s =1, i.e. @ > a., and associated with neg-
ative potential if s = —1, i.e. a < a.. It is obvious

Fig.2. (Color online) Showing the parametric regime for
the existence of DLs (obtained from the solutions of go = 0
for a) for 0 = 0.1

"0.30

Fig.3. (Color online) Showing the parametric regime for
the existence of DLs (obtained from the solutions of go = 0
for &) for p. = 0.2

from Figs.2 and 3 that ar > a, which confirm us that
DLs are associated with positive potential only. The
parametric regimes for the existence of positive DLs are
bounded by the lower and upper surface plot of Figs. 2
and 3, and DLs exist for parameters corresponding to
any point in between two (go = 0) surface plots.

It may be noted here that if we would neglect the
higher order nonlinear term (viz. the fourth term of (28)
or the term containing 2), but would keep the lower
order nonlinear term (viz. the third term of (28) or the
term containing %?), we would obtain the solitary struc-
tures that are due to the balance between nonlinearity
(associated with % only) and dispersion [1, 12, 13]. On
the other hand, in our present work, we have kept both
the terms containing %> and 1%, and have obtained the
DL-structures which are formed due to the balance be-
tween the nonlinearity (associated with ¥? and 1*) and
dispersion. It may be added here that the dissipation
(which is usually responsible for the formation of the
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shock-like structures [55, 20, 25]) is not essential for the
formation of solitary and DL-structures [3, 56, 19]. The
stationary DL-solution of the sG-equation, and the con-
ditions for the existence of DLs clearly imply that the
DL-structures predicted in our present investigation is
not due to the dissipation (which has been neglected in
our present investigation), but is due to the coexistence
of positively and negatively charged dust.

IV. Numerical Analysis and Discussion. We
now turn to (28) with the term (v/27)%, which is due
to the effects of the non-planar (cylindrical or spheri-
cal) geometry. An exact analytic solution of (28) is not
possible. Therefore, we have numerically solved (28),
and have studied the effects of cylindrical and spherical
geometries on time-dependent DA DLs. The results are
depicted in Figs.4 to 5. The initial condition, that

Fig.4. (Color online) Showing the effects of cylindrical
geometry on DA positive DLs for o = 0.615, p. = 0.2,
pi = 0.4, 0 = 0.1, and Up = 0.05

2000 30

Fig. 5. (Color online) Showing the effects of spherical geom-
etry on DA positive DLs for a = 0.615, p. = 0.2, u; = 0.4,
o =0.1, and Up = 0.05

we have used in our numerical analysis, is in the form of
the stationary solution of (28) without the term (v/27).
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Figures 4 (5) shows how the effects of cylindrical (spher-
ical) geometry modify the DA DLs. The numerical so-
lutions of (28) (displayed in Figs.4 and 5) reveal that
for a large value of 7 (e.g. 7 = —30), the cylindrical
(v = 1) and spherical (v = 2) DLs are almost similar
to 1D planar (v = 0) structures. This is because for
a large value of 7, the term (v/27)%, which is due to
the effects of the cylindrical or spherical geometry, is no
longer dominant. However, as the value of 7 decreases,
the term (v/27)1Y becomes dominant, and spherical and
cylindrical DL-structures differ from 1D planar ones. It
is found that as the value of 7 decreases, the amplitude
of these localized pulses increases. It is also found that
the amplitude of cylindrical DA-, DL-structures is larger
than those of 1D planar ones, but smaller than that of
the spherical ones. The amplitude of the DLs increases
with the increase of Up.

We have used a wide range of the dusty plasma
parameters (viz. o = 0.07-0.19, p. = 0.2—0.4, and
i = 0.3—0.4) in our numerical analysis. Thus, the dust-
plasma parameters are within the appropriate ranges for
both space environments [33-36, 39, 40], and laboratory
devices [42-45]. The value of o for which the existence
of the DLs is found, is also within the ranges of the dusty
plasma parameters corresponding to dust-plasma para-
meters for both space environments [33-36, 39, 40], and
laboratory devices [42-45]. To conclude, we hope that
our results may be useful in understanding the localized
electrostatic disturbances in both space environments
[33-36, 39,40], and laboratory devices [42-45].
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