
Pis'ma v ZhETF, vol. 94, iss. 5, pp. 387 { 392 c 2011 September 10Nonplanar double layers in plasmas with opposite polarity dustA.A.Mamun1)2), A.MannanDepartment of Physics, Jahangirnagar University, Savar, Dhaka-1342, BangladeshSubmitted 20 June 2011Resubmitted 11 July 2011Nonplanar (cylindrical and spherical) double layers (DLs) in a four-component dusty plasma (composedof inertial positively and negatively charged dust, Boltzmann electrons and ions) are studied by employing thereductive perturbation method. The modi�ed Gardner (mG) equation describing the nonlinear propagation ofthe dust-acoustic (DA) waves is derived, and its nonplanar double layer solutions are numerically analyzed.The parametric regimes for the existence of the DLs, which are found to be associated with positive potentialonly, are obtained. The basic features of nonplanar DA DLs, which are found to be di�erent from planar ones,are also identi�ed. The implications of our results to di�erent space and laboratory dusty plasma situations,where opposite polarity dust are observed, are discussed.I. Introduction. There has been a great deal of in-terest in understanding linear and nonlinear features ofthe novel dust acoustic (DA) waves [1], not only becausethey exist in both space and laboratory dusty plasmas[2, 3], but also because they triggered a number of re-markable laboratory experiments [4{8]. Rao et al. [1]have �rst theoretically predicted the existence of thisnovel extremely low phase velocity (in comparison withthe electron and ion thermal velocities) DA-waves, wherethe dust mass provides the inertia and the electron andion thermal pressures give rise to the restoring force.The prediction of Rao et al. [1] has then conclusivelyveri�ed by a number of laboratory experiments [4{6].The linear features of the novel DA-waves have also beenextensively studied for some other situations [9{11].Rao et al., in their seminal work [1], have also stud-ied small, but �nite amplitude DA solitary waves. Ma-mun et al. [12] and Mamun [13] have then generalizedthe work of Rao et al. [1] to study arbitrary ampli-tude solitary waves. The nonlinear DA-waves have alsobeen rigorously investigated by many authors for di�er-ent dusty plasma situations theoretically [14{28] as wellas experimentally [7, 8] during last two decades. How-ever, all of these works on nonlinear DA-waves [1, 12{28] are based on the most commonly used dusty plasmamodel that assumes negatively charged dust. The con-sideration of negatively charged dust is due to the factthat in low-temperature laboratory plasmas, collectionof plasma particles (viz. electrons and ions) is the onlyimportant charging process, and the thermal speeds ofelectrons far exceeds that of ions. But, there are some1)Present adress: The Abdus Salam International Centre forTheoretical Physics, 34014 Trieste, Italy2)e-mail: mamun phys@yahoo.co.uk

other more important charging processes by which dustgrains become positively charged [29{32]. The princi-pal mechanisms by which dust grains become positivelycharged are photoemission in the presence of a ux ofultraviolet photons [29, 30], thermionic emission inducedby radiative heating [31], secondary emission of electronsfrom the surface of the dust grains [32], etc.There is direct evidence of the coexistence of posi-tively and negatively charged dust in di�erent regionsof space, viz. Earth's mesosphere [33], cometary tails[34, 35], Jupiter's magnetosphere [35, 36], etc. Chow etal. [32] have theoretically shown that due to the size ef-fect on secondary emission, insulating dust grains withdi�erent sizes can have the opposite polarity, smallerones being positive and larger ones being negative. Theopposite situation, i.e. larger (massive) ones being posi-tive and smaller (lighter) ones being negative, is also pos-sible by triboelectric charging [37, 38]. This is predictedfrom the observations of dipolar electric �elds perpendic-ular to the ground, with negative pole at higher altitudes,generated by dust devils [39, 40] and sand storms [41].The formation of these dipolar electric �elds means thatnegatively charged smaller (i.e. lighter) dust are blownupward in the convection, while positively charged larger(more massive) dust remain the surface due to grav-ity. It is shown by experiments using Mars dust analo-gous in Mars simulation wind tunnel that �-sized dustcan carry net charges of around 105e, and there couldbe almost equal quantities of positively and negativelycharged dust in the suspension [37, 40].The coexistence of positively and negatively chargeddust, with larger (massive) dust being positive andsmaller (lighter) dust being negative [42{44] or vice versa[45], is also observed in laboratory devices [42{45] wheredust of polymer materials are used. It may be noted�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011 387 2�



388 A.A.Mamun, A.Mannanhere that the coexistence of same sized dust of oppositepolarity may also occur by photoemission if the pho-toemission yields of the dust-material are very di�erent[46].Recently, motivated by these theoretical predictionsand satellite/experimental observations, a number of au-thors [37, 47{52] have considered a dusty plasma withdust of opposite polarity, and have investigated linear[48, 37] and nonlinear [47, 49{52] DA-waves. However,all of these studies are limited to one-dimensional pla-nar geometry, which may not be the realistic situation inspace and laboratory devices, since the waves observedin space (laboratory devices) are certainly not in�nite(unbounded) in one-dimension (1D). The most of theseworks on nonlinear DA-waves are also concerned witheither solitary or shock structures, but not with doublelayers. Therefore, in our present work, we consider adusty plasma system (consisting of positively and nega-tively charged dust uid, Boltzmann electrons and ions)and a more general geometry (which is valid for bothplanar, cylindrical and spherical geometries), and the-oretically study the basic features of the DA DLs thatare found to exist in such a realistic novel dusty plasmasystem.The paper is organized as follows. The basic equa-tions governing the dynamics of the DA-waves is pre-sented in section II. The modi�ed Gardner (mG) equa-tion is derived in section III. The numerical analysis ofmG-equation along with a brief discussion is presentedin section IV.II. Governing Equations. We consider the non-linear propagation of the DA-waves in an unmagne-tized nonplanar dusty plasma system containing pos-itively and negatively charged dust uid, Boltzmannelectrons and ions. Thus, at equilibrium, we haveni0 + Zpnp0 = ne0 + Znnn0, where ni0, np0, ne0, nn0are, respectively ion, positive dust, electron, and nega-tive dust number density at equilibrium, and Zp (Zn)represents the charge state of positive (negative) dust.The nonlinear dynamics of the DA-waves propagatingin such a nonplanar dusty plasma is governed by@nn@t + 1r� @@r (r�nnun) = 0; (1)@un@t + un @un@r = @�@r ; (2)@np@t + 1r� @@r (r�npup) = 0; (3)@up@t + up @up@r = ��@�@r ; (4)1r� @@r �r� @�@r� = ��; (5)

� = �ie�� � �ee�� + �pnp � nn; (6)where � = 0 for 1D planar geometry, and � = 1(2) for a nonplanar cylindrical (spherical) geometry;np (nn) is the positive (negative) dust number den-sity normalized by its equilibrium value np0 (nn0); up(un) is the positive (negative) dust uid speed normal-ized by Cd = (ZnkBTi=mn)1=2; � is the electrosta-tic wave potential normalized by kBTi=e; � is the sur-face charge density normalized by Znenn0; � = Ti=Te,� = Zpmn=Znmp, �e = ne0=Znnn0, �i = ni0=Znnn0,�p = Zpnp0=Znnn0 = 1+�e��i, mn (mp) is the mass ofthe negative (positive) dust, Ti (Te) is the ion (electron)temperature, kB is the Boltzmann constant, and e is themagnitude of the electron-charge. The time and spacevariables are in units of the negative dust plasma pe-riod !�1pn = (mn=4�e2Z2nnn0)1=2, and the Debye-radius�Dm = (ZnkBTi=4�e2Z2nnn0)1=2, respectively.III. Derivation of mG-Equation. To study �-nite amplitude DA DLs by the reductive perturbationmethod [53, 54], we �rst introduce the stretched coordi-nates: � = �(r � Vpt); (7)� = �3t; (8)where � is a small parameter (0 < � < 1) measuring theweakness of the dispersion, and Vp (normalized by Cd)is the phase speed of the perturbation mode, and expandall the dependent variables (viz. nn, np, un, up, �, and�) in power series of �:nn = 1 + �n(1)n + �2n(2)n + �3n(3)n + � � �; (9)np = 1 + �n(1)p + �2n(2)p + �3n(3)p + � � �; (10)un = 0 + �u(1)n + �2u(2)n + �3u(3)n + � � �; (11)up = 0 + �u(1)p + �2u(2)p + �3u(3)p + � � �; (12)� = 0 + ��(1) + �2�(2) + �3�(3) + � � �; (13)� = 0 + ��(1) + �2�(2) + �3�(3) + � � �: (14)Now, expressing (1){(6) in terms of � and � , and sub-stituting (9){(14) into the resulting equations ((1){(6)expressed in terms of � and �), one can easily developdi�erent sets of equations in various powers of �. To thelowest order in � one obtainsu(1)p = � Vp ; n(1)p = � V 2p ; u(1)n = �  Vp ; (15)n(1)n = �  V 2p ; �(1) = 0; V 2p = 1 + ��p�i + �e� ; (16)where  = �(1). The expression for V 2p in (16) rep-resents the linear dispersion relation for the DA-waves�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



Nonplanar double layers in plasmas with opposite polarity dust 389propagating in a dusty plasma under consideration. Tothe next higher order in �, we obtain another set of equa-tions, which, after using (15), (16), can be simpli�ed asu(2)p = �2 22V 3p + ��(2)Vp ; n(2)p = 3�2 22V 4p + ��(2)V 2p ; (17)u(2)n =  22V 3p � �(2)Vp ; n(2)n = 3 22V 4p � �(2)V 2p ; (18)�(2) = 12A 2 = 0; A = �i � �e�2 � 3V 4p (1� �p�2): (19)It is obvious from (19) that A = 0 since �(1) 6= 0. Thesolution of A = 0 for � is given by� = �c = 12C1 [�C2 �qC22 � 4C1C3]; (20)whereC1 = �p�i(�p + 3�i + 6�e�) + �e�p�2(3�e � �p);C2 = 2�p(�i � �e�2);C3 = �i(1� 3�i � 6�e�)� �e�2(1 + 3�e):It is obvious that (19) is satis�ed for � = �c. We havenumerically shown how �c varies with �e and �i for a�xed � = 0:1. The results are displayed in Fig. 1 which
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�(2) ' 12s�A� 2: (22)This means that for � 6= �c, �(2) must be included inthe third order Poisson's equation. To the next higherorder in �, we obtain the third set of equations:@n(1)n@� + �u(1)nVp� � Vp @n(3)n@� + @Fn@� = 0; (23)@n(1)p@� + �u(1)pVp� � Vp @n(3)p@� + @Fp@� = 0; (24)@u(1)n@� � Vp @u(3)n@� + @@� hu(1)n u(2)n i� @�(3)@� = 0; (25)@u(1)p@� � Vp @u(3)p@� + @@� hu(1)p u(2)p i+ �@�(3)@� = 0; (26)@2 @�2 + 12sA� 2 � (�i + �e�)�(3) + (�i � �e�2) �(2)�16(�i + �e�3) 3 + �pn(3)p � n(3)n = 0; (27)where Fn = n(1)n u(2)n +n(2)n u(1)n +u(3)n and Fp = n(1)p u(2)p ++ n(2)p u(1)p + u(3)p . Now, using (15){(19) and (23){(27),we �nally obtain a nonlinear dynamical equation of theform:@ @� + �2�  + p @ @� + q 2 @ @� + p0 @3 @�3 = 0; (28)where p = sA�p0, q = p0q0, andp0 = V 3p2(1 + ��p) ; (29)q0 = 152V 6p (1 + �p�3)� 12(�i + �e�3): (30)Equation (28) is a modi�ed Gardner (mG) equation.The modi�cation is due to the extra term, �2� ), whicharises due to the e�ects of the nonplanar geometry. Wehave already mentioned that � = 0 corresponds to a1D planar geometry which reduces (28) to a standardGardner (sG) equation. Our aim now is to numericallyanalyze mG-equation. However, for clear understand-ing, we �rst briey discuss the stationary DL-solution ofthis standard Gardner equation [i.e. (28) with � = 0].The stationary DL-solution of the sG-equation (i.e.(28) with � = 0) is obtained by considering a movingframe (moving with speed U0) � = � � U0� , and im-posing all the appropriate boundary conditions for DL-solution, including  ! 0, d =d� ! 0, d2 =d�2 ! 0at � ! �1. These boundary conditions for the station-ary DL-solution allow us to express the sG-equation (i.e.(28) with � = 0) as�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011



390 A.A.Mamun, A.Mannan12 �d d� �2 + V ( ) = 0; (31)where the pseudo-potential V ( ) isV ( ) = � U02p0 2 + sA�6  3 + q012 4: (32)It is obvious from (32) thatV ( ) j =0= dV ( )d ���� =0 = 0; (33)d2V ( )d 2 ���� =0 < 0: (34)The conditions (33) and (34), which are automaticallysatis�ed, imply that the DL-solution of (31) exists if andonly if V ( ) j = m= dV ( )d ���� = m = 0; (35)where  m is the amplitude of the DLs. The condition(35) can be expressed asU0 = �s2A2�p06q0 ; (36) m = s 6U0A�p0 : (37)Now, using (32) and (37) in (31) we haved  ( m �  ) = p�d�; (38)where  = q0=6. Now, integrating (38) the stationaryDL-solution of sG-equation (i.e. (28) with � = 0) canbe written as =  m2 �1 + tanh ��� ; (39)where � is the width of the DLs, and is given by� =s 24� 2mq0 : (40)It is clear from (39) and (40) that DLs exist if and onlyif q0 < 0, i.e. �L < � < �U , where �L (�U ), obtainedfrom q0 = 0, is the lower (upper) limit of � above (be-low) which DLs exist. We have graphically shown how�U (upper surface plots of Figs. 2 and 3) and �L (lowersurface plots of Figs. 2 and 3) vary with �e, �i, and �.On the other hand, since p0 > 0 and U0 > 0, (39) and(37) indicate that the DLs are associated with positivepotential if s = 1, i.e. � > �c, and associated with neg-ative potential if s = �1, i.e. � < �c. It is obvious
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Nonplanar double layers in plasmas with opposite polarity dust 391shock-like structures [55, 20, 25]) is not essential for theformation of solitary and DL-structures [3, 56, 19]. Thestationary DL-solution of the sG-equation, and the con-ditions for the existence of DLs clearly imply that theDL-structures predicted in our present investigation isnot due to the dissipation (which has been neglected inour present investigation), but is due to the coexistenceof positively and negatively charged dust.IV. Numerical Analysis and Discussion. Wenow turn to (28) with the term (�=2�) , which is dueto the e�ects of the non-planar (cylindrical or spheri-cal) geometry. An exact analytic solution of (28) is notpossible. Therefore, we have numerically solved (28),and have studied the e�ects of cylindrical and sphericalgeometries on time-dependent DA DLs. The results aredepicted in Figs. 4 to 5. The initial condition, that
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Figures 4 (5) shows how the e�ects of cylindrical (spher-ical) geometry modify the DA DLs. The numerical so-lutions of (28) (displayed in Figs. 4 and 5) reveal thatfor a large value of � (e.g. � = �30), the cylindrical(� = 1) and spherical (� = 2) DLs are almost similarto 1D planar (� = 0) structures. This is because fora large value of � , the term (�=2�) , which is due tothe e�ects of the cylindrical or spherical geometry, is nolonger dominant. However, as the value of � decreases,the term (�=2�) becomes dominant, and spherical andcylindrical DL-structures di�er from 1D planar ones. Itis found that as the value of � decreases, the amplitudeof these localized pulses increases. It is also found thatthe amplitude of cylindrical DA-, DL-structures is largerthan those of 1D planar ones, but smaller than that ofthe spherical ones. The amplitude of the DLs increaseswith the increase of U0.We have used a wide range of the dusty plasmaparameters (viz. � = 0:07�0:19, �e = 0:2�0:4, and�i = 0:3�0:4) in our numerical analysis. Thus, the dust-plasma parameters are within the appropriate ranges forboth space environments [33{36,39, 40], and laboratorydevices [42{45]. The value of � for which the existenceof the DLs is found, is also within the ranges of the dustyplasma parameters corresponding to dust-plasma para-meters for both space environments [33{36,39, 40], andlaboratory devices [42{45]. To conclude, we hope thatour results may be useful in understanding the localizedelectrostatic disturbances in both space environments[33{36, 39, 40], and laboratory devices [42{45].The research grant for research equipment from theThird World Academy of Sciences, ICTP, Trieste, Italyis gratefully acknowledged. One of the authors (AAM)would like to thank Prof. Padma Shukla and JosephNiemela for the useful discussions, Ms. Daniela Valen-tini for the administrative support, and the AS-ICTP forthe �nancial support during his visit to the centre underthe Associateship Scheme.1. N.N. Rao, P.K. Shukla, and M.Y. Yu, Planet. SpaceSci. 38, 543 (1990).2. F. Verheest,Waves in Dusty Plasmas (Kluwer AcademicPublishers, Dordrecht, 2000).3. P.K. Shukla and A.A. Mamun, Introduction to DustyPlasma Physics (IoP Publishing Ltd., Bristol, 2002).4. A. Barkan, R.L. Merlino, and N. D'Angelo, Phys. Plas-mas 2, 3563 (1995).5. C. Thompson, A. Barkan, N. D'Angelo, and R.L. Mer-lino, Phys. Plasmas 4, 2331 (1997).6. R. L. Merlino and J. Goree, Phys. Today 57(7), 32(2004).�¨±¼¬  ¢ ���� ²®¬ 94 ¢»¯. 5 { 6 2011
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